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The rare double Dalitz decay of the neutral pion proceeds through a two-photon

intermediate state, π0 → γ∗γ∗ → e+e−e+e−, which provides sensitivity to the physics

of the π0γ∗γ∗ coupling. The properties of this interaction are a consequence of the

internal structure of mesons in general. The spatial extent of the quark-antiquark pair

becomes manifest as a form factor, dependent on the momentum transfer (q2) of the

virtual photons. The double Dalitz decay is sensitive to this electromagnetic form factor

in the range of q2 from 4m2
e to M2

π0. In addition, the correlation between the planes

of polarization of the two photons provides a measure of the parity of the pion. This

correlation is preserved in the angle between the two e+e− pairs. Since the pion is a

pseudoscalar particle, this angular correlation can be used to limit the amount of CP

violation at the π0γ∗γ∗ vertex.

This thesis presents an analysis of the double Dalitz decay using KL → π0π0π0

decays in flight. Based on a sample of 30511 of these events with less than 1% back-

ground, the branching ratio relative to the common two-photon mode was found to

be B(4e)/B(γγ) = (3.30 ± 0.18) × 10−5. These same events were used to extract the

momentum dependence of the form factor, parameterized as α = 1.3 ± 1.3, and to set

a limit on the possible CP violating component of the coupling, which in terms of a

mixing angle is found to be limited to ζ < 1.72◦ at the 90% CL. Finally, a preliminary

measurement of the branching ratio of the related radiative decay, π0 → e+e−e+e−γ,

has been performed and found to be B(4eγ)/B(γγ) = (1.68 ± 0.27) × 10−6 based on

425 candidate events with 25% background.
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Chapter 1

Introduction

Then anyone who leaves behind him a written manual,

and likewise anyone who receives it,

in the belief that such writing will be clear and certain,

must be exceedingly simple-minded.

– Plato

The π-meson, or pion, has been an invaluable tool for unraveling the mysteries

of the fundamental interactions of physics since its discovery over fifty years ago. Its

existence was first postulated by Yukawa [1] in 1935 in an attempt to develop a “quanta”

of the nuclear force. Shortly after Yukawa’s proposal, two candidate particles were

observed in cosmic rays experiments. It was not until 1947 that the identities of what

are now known as the pion and the muon were finally established [2]. Three years

later, the neutral pion was discovered at the Berkeley synchrotron [3]. This experiment

observed pairs of photons consistent with the interpretation that they were produced

by π0 → γγ decays.

The existence of the two–photon decay channel provides a means for studying the

nature of the pion under the discrete symmetries of charge conjugation (C ), parity (P),

and time reversal (T ). As pointed out by Yang [4] in 1950, the existence of the two–

photon decay mode leads immediately to the conclusion that the π0 has zero intrinsic

spin. Additionally, the angle between the two polarization planes will have different

correlations depending on whether the pion is a scalar (even under P) or a pseudoscalar
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(odd under P) particle. Yang proposed an experiment to extract the parity of the π0

by measuring the polarization of the two photons. His idea was expanded to include

sensitivity to both C and T by Bernstein and Michel [5].

During these same years, an alternative decay mode of the neutral pion was

predicted and observed. In a letter published in 1951 [6], Dalitz calculated the rate for

π0 → e+e−γ assuming that it proceeded through a two–photon decay in which one of

the photons was virtual and converted internally into an electron-positron pair. The

experimental evidence of this decay process, now known simply as a Dalitz decay, was

first seen in emulsion plates exposed to the Chicago cyclotron in 1952 [7]. A number

of experiments performed over the next 10 years verified Dalitz’s hypothesis that the

π0 → e+e−γ decay resulted from internal conversion of a virtual photon [8, 9, 10].

It was soon noted that if one of the two photons could convert to an e+e− pair,

then so could both. The resulting process, π0 → e+e−e+e−, is known as the double

Dalitz decay. The pioneering work on this mode was published in 1955 by Kroll and

Wada [11]. They worked out the differential decay rate neglecting contributions from

the exchange of identical particles. They also made the first connection between the

orientation of the planes formed by the two Dalitz pairs and the polarization of the

intermediate photons, suggesting that the symmetries discussed previously could be

extracted from the π0 → e+e−e+e− final state. An experiment was soon performed by

Samios at the Nevis cyclotron in 1962 [12]. Neutral pions were produced in a bubble

chamber in which their decays were photographed. Some 835 thousand photos were

scanned by hand to find 206 double Dalitz candidates. The branching ratio of the decay

was measured to 10% and was in complete agreement with the prediction of Kroll and

Wada. The angular distribution was also studied and was found to rule out a scalar

pion at 3.6σ. A search for T -violation was inconclusive.
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Today, the Samios measurements are still the only published experimental results

on the double Dalitz decay of the π0.1 There have, however, been two important

theoretical advancements made over the years. In 1973, Miyazaki and Takasugi [14]

repeated the Kroll-Wada analysis, but included the contributions from the exchange

diagram. More recently, the Colorado group of the KTeV experiment published a com-

plete description of the decay process, including the effects of first-order radiative cor-

rections [15].

The analysis presented in this thesis can be viewed as a modern rendition of

the Samios experiment. The goal is to measure the branching ratio, including radiative

effects, to around 1% and to test for both CPT -invariance and CP-violation in π0 decays.

To do this, the KTeV experiment at Fermilab collected a large number of KL → π0π0π0

events in which one of the pions decays as π0 → e+e−e+e−. The final data sample is

roughly 30,000 events.

The theoretical background of the measurements is outlined in Chapter 2. Then

a detail description of the KTeV experiment, with emphasis given to areas relevant to

this analysis, is presented in Chapter 3. Next, the Monte Carlo program used to model

the theory and to calculate the acceptance of the detector as well as selection cuts, is

summarized in Chapter 4. Chapter 5 explains the general reconstruction techniques

that turn the raw binary data into physically meaningful quantities. The actual results

are then presented in the last three chapters: the π0 → e+e−e+e− branching ratio

analysis in Chapter 6, the CP and form factor analysis in Chapter 7, and the radiative

π0 → e+e−e+e−γ branching ratio in Chapter 8.

1 We believe that they may be the oldest results in the Particle Data Group’s review of particle
properties (PDG) [13].



Chapter 2

Theory of π0 Decays

The neutral pion interacts strongly with other hadrons, however since it is the

lightest hadron it can not decay strongly. Weak decays are suppressed if not forbidden

entirely, leaving just the electromagnetic channel. Since the π0 at rest has zero angular

momentum, the decay into a single photon is not allowed. However, two photons, as a

system, may have zero angular momentum depending on the spin of each photon. As it

turns out, the two–photon decay accounts for 98.798% of the π0 width. All of the other

observed decays can be successfully described as a two–photon decay with one or both of

the photons off–shell and internally converting to an electron–positron pair. Therefore,

many of the properties of the rare π0 decays are inherited from the common two–photon

decay. In this chapter, I will present a detailed analysis of the two–photon decay which

will result in a general model of the π0γ∗γ∗. I will then show how measurements of rare

decay modes further constrain the model. Much of the work presented in this chapter

has been previously published by Barker, et al [15].

2.1 The π0γ∗γ∗ Vertex

Although the π0 → γγ decay is electromagnetic in nature, it is not a fundamental

coupling in QED. The simple picture of the quark and anti-quark annihilating is com-

plicated by the details of the hadronic bound state. Even so, there are a remarkable

number of powerful constraints which, along with some mild assumptions, allow us to
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express the coupling in terms of a few free parameters.

To begin with, the pion is a spin–0 particle associated with the scalar field Π and

the photon is the spin–1 quanta of the electromagnetic field, represented by the field

tensor Fµν . Lorentz invariance of the interaction requires the Lagrangian to be a scalar.

The most general form of the interaction is therefore

L = CµνρσFµνF ρσΠ, (2.1)

where Cµνρσ is a tensor that couples the pion field to the two photon fields. There are

two allowed forms of the coupling, one appropriate to a scalar pion and another for a

pseudoscalar pion. This can be seen by appealing to Jackson’s treatment of classical

electromagnetic waves [16]. Consider the two Lorentz invariant combinations of the

classical electromagnetic field, E ·B and E2 −B2. In terms of the field tensors and the

coupling, these field combinations correspond to

E · B =
1

4
εµνρσFµνF ρσ, (2.2a)

E2 − B2 =
1

4
(gµσgνρ − gµρgνσ) FµνF ρσ. (2.2b)

The difference between these two combinations can be seen by considering the properties

of the fields under a parity (P) transformation. The fields transform like

PE = −E PB = +B. (2.3)

Therefore, the invariant combinations transform like

P (E · B) = − (E · B) , (2.4a)

P
(

E2 − B2
)

= +
(

E2 − B2
)

. (2.4b)

The first combination is therefore a pseudoscalar while the second is a scalar. The

neutral pion is known to be a pseudoscalar particle (P–odd) and to be its own anti–

particle (C–even). It should then be clear, given a pseudoscalar π0, that the first

coupling is CP–conserving while the second one is CP–violating.
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Allowing for the possibility of CP–violation, the Lagrangian will be written as

L = − i

4M
[FP εµνρσ + FS (gµρgνσ − gµσgνρ)] F

µνF ρσΠ, (2.5)

where FP,S are dimensionless, complex coupling coefficients that in generally depend

on the momenta of the two photons. If the momentum of photon i is ki and the pion

mass is M , the quantity xi = k2
i /M

2 parameterizes how far photon i is from the mass

shell. The coefficients can be decomposed into a real constant, a real function, and an

imaginary phase,

FP = gP f(x1, x2)e
iΨP , (2.6a)

FS = gSf(x1, x2)e
iΨS , (2.6b)

where gP,S and ΨP,S are real constants and the form factor f(x1, x2) is real, dimension-

less, and normalized such that f(0, 0) = 1. It is useful here to introduce two parameters:

a mixing angle ζ and a phase difference δ, defined by

gP = g̃ cos ζ, (2.7a)

gS = g̃ sin ζ, (2.7b)

δ = ΨS − ΨP , (2.7c)

where g̃2 = g2
P + g2

S . Ignoring an overall phase, the interaction takes its final form

L = − i

4M
g̃f(x1, x2)

[

cos ζεµνρσ + sin ζeiδ (gµρgνσ − gµσgνρ)
]

FµνF ρσΠ. (2.8)

Before discussing the physical implications of the two couplings, I will summarize the

various models typically used to describe the momentum dependence of the interaction.

It should be noted that I have assumed that the momentum dependence of the two CP

couplings is the same. This does not have to be the case, but the scalar term is known

to be small, if not zero, and therefore whatever momentum dependence it might have

is likely to be unimportant.
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2.1.1 The π0 Electromagnetic Form Factor

The electromagnetic form factor describes the departure from a point-like inter-

action due to the hadronic structure of the pion. The form factor must be a symmetric

function of the two photon momenta and the pion momentum. It is a scalar func-

tion and takes scalar arguments. Given the three momenta available one usually uses

x1 = k2
1/M

2 and x2 = k2
2/M

2. For real photons x = 0, while for e+e− pairs x has a

minimum value of xmin = 4m2/M2, where m is the electron mass. Additionally, the

form factor is normalized by the condition f(0, 0) = 1 and is required to vanish at some

large momentum.

The π0 form factor has been studied in a variety of theoretical frameworks, in-

cluding quark triangle loops and vector meson dominance (VMD). While the calculation

of quark loops was important in the context of the anomalous divergence of the axial

current, the VMD models have been successful in describing the decays of both the neu-

tral pion and kaon. These models take into account processes involving intermediate

vector mesons which may decay to virtual photons. A recent VMD model, and one well

suited to the double Dalitz mode, was proposed by D’Ambrosio, Isidori, and Portolés

(DIP) [17],

fDIP(k2
1 , k

2
2) = 1 + α

(

k2
1

k2
1 − M2

ρ

+
k2
2

k2
2 − M2

ρ

)

+ β
k2
1k

2
2

(k2
1 − M2

ρ )(k2
2 − M2

ρ )
, (2.9)

where Mρ ≈ 770MeV/c2 is the ρ meson mass. This form only includes the contribution

from the ρ meson and ignores the ω and φ mesons. This is justified since the ρ-pole is

already far removed from the physically allowed momentum range in pion decays and

the other vector mesons are even more massive.

The two limiting forms offer some insight into this model. First consider the case

of both photons being very nearly real, k2
i � M2

ρ for i = 1, 2. In that limit, the DIP

form factor becomes identical to the general Taylor expansion to first order

fTaylor(k
2
1 , k

2
2) = 1 − α(k2

1/M
2
ρ + k2

2/M
2
ρ ) + O(k4). (2.10)
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Table 2.1: Recent measurements of the π0 form factor slope parameter, a = −αµ.

Value Process Year

+0.026 ± 0.024 ± 0.048 π−p → π0n 1992[18]
+0.025 ± 0.014 ± 0.026 π−p → π0n 1992[19]

+0.0326 ± 0.0026 ± 0.0026 e+e− → e+e−π0 1991[20]
−0.11 ± 0.03 ± 0.08 1989[21]

+0.032 ± 0.004 PDG Average 2002[13]

Clearly the parameter β is unimportant when the photons are nearly real. The other

limit is where both momenta are very large. As they approach infinity, the form factor

approaches the constant 1 + 2α + β. A reasonable model should have the form factor

vanish above some very large momenta. I choose to force the form factor to vanish at

infinity by fixing β such that 1+2α+β = 0, that is β = −(1+2α). Using this constraint

the DIP form factor, in terms of x1 and x2, takes the form

f(x1, x2;α) =
1 − µ(1 + α)(x1 + x2)

(1 − µx1)(1 − µx2)
, (2.11)

where µ = M2/M2
ρ ≈ 0.032.

There have been several measurements of the π0 form factor slope parameter,

defined as linear coefficient in the Taylor expansion. In terms of the present notation, the

slope parameter is a = −αµ. Table 2.1 lists the recent results taken from the PDG [13].

The indirect measurement from e+e− → e+e−π0 dominates the world average while the

direct probes have at best uncertainties of 100%. In terms of the DIP parameter α, the

world average is −1 within errors.

2.2 The π0 → γγ Decay

Consider the two–photon decay in a reference frame in which one photon travels

in the +ẑ direction with helicity λ1 and the other travels in the −ẑ direction with

helicity λ2. In that frame, the matrix element which describes the transition looks like

Mλ1λ2
=

2

M
g̃f(x1, x2;α)

[

cos ζεµνρσ + sin ζeiδ (gµρgνσ − gµσgνρ)
]

kµ
1 ε∗νλ1

kρ
2ε

∗σ
λ2

, (2.12)
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where kµ
i and εµ

λi
are the momentum and polarization 4–vectors for photon i, εµνρσ is

the totally antisymmetric tensor, and gµν is the metric tensor. There are two allowed

helicity configurations for the photons, denoted by |++〉 and |−−〉. In the first state,

both photons are right handed (right circularly polarized) and in the second they are

both left handed. The calculation of the matrix element for each of the two terms is

carried out in Appendix B. The results are

M++ = −Mg̃(sin ζeiδ − i cos ζ), (2.13a)

M−− = −Mg̃(sin ζeiδ + i cos ζ). (2.13b)

The partial width for the two allowed helicity states becomes

Γ++ =
Mg̃2

32π
(1 − 2 sin ζ cos ζ sin δ) , (2.14a)

Γ−− =
Mg̃2

32π
(1 + 2 sin ζ cos ζ sin δ) . (2.14b)

The decay rates to the two allowed final states must be equal if we require CPT invari-

ance. This is because

C |++〉 = |++〉 C |−−〉 = |−−〉 (2.15a)

P |++〉 = |−−〉 P |−−〉 = |++〉 (2.15b)

T |++〉 = |−−〉 T |−−〉 = |++〉 (2.15c)

Therefore, CPT will be conserved if either one of the couplings is zero or the phase

difference between the two couplings is zero. Regardless of CPT conservation, the total

rate of the decay is

Γγγ =
Mg̃2

16π
. (2.16)

The coupling constant g̃ can then be determined from the two–photon width,

g̃ =
√

16πΓγγ/M. (2.17)

Table 2.2 lists the measured two–photon branching ratio and π0 lifetime along with the

derived value of the decay constant.
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Table 2.2: Numerical values of the two–photon branching ratio Bγγ and π0 lifetime τ
from the PDG, and the π0 decay constant g̃ derived from them.

Parameter Value

Bγγ (98.798 ± 0.032)%
τ (8.4 ± 0.6) × 10−17 s
g̃ (1.70 ± 0.06) × 10−3

In order to study a non–trivial form factor we must allow for one or both of the

photons to be virtual and convert internally to an electron–positron pair. Such pairs

are called Dalitz pairs after the first person to systematically study them, R. H. Dalitz.

The single Dalitz decay allows for a measurement of the momentum dependence of the

form factor when one photon is virtual, with a momentum squared in the range 4m2

to M2. The next section will describe the general properties of Dalitz pairs through an

analysis of the single Dalitz decay, π0 → e+e−γ.

2.3 The π0 → e+e−γ Decay

Roughly one percent of the time one of the two photons will internally convert

into an e+e− pair. The Feynman diagram for this process is shown in Figure 2.1. The

theory of internal conversion was first studied by Dalitz [6] who predicted a tree-level

branching ratio for π0 → e+e−γ of 0.01185. The square of the momentum of the virtual

photon is observed as the invariant mass of the Dalitz pair and takes on continuous

values from 4m2 up to M2. The process can therefore be used to study the functional

form of the electromagnetic form factor.

The differential partial width for the single Dalitz decay has been extensively

studied, most notably by Kroll and Wada [11]. In the current language it takes the

form

1

Γγγ

d2Γeeγ

dxdy
=

α

4π
f2(x, 0)

(1 − x)3

x

√

1 − x0/x(1 + y2 + x0/x)(1 + δ(x, y)), (2.18)
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π
0

γ

e
+

e
−

Figure 2.1: Single Dalitz Tree Level Feynman Diagram.

where the two phase space variables are defined by

x =
(p+ + p−)2

P 2
, (2.19a)

y =
2 P · (p+ − p−)

P 2(1 − x)
, (2.19b)

with P , p+, and p− representing the pion, positron, and electron momenta, respectively.

The variable x0 is the minimum value of x. The factor δ(x, y) is the leading order

radiative correction, first calculated by Mikaelian and Smith [22]. The range of x is

from 4m2/M2 to 1, and the range of y, −(1− x) to (1− x). The partial width behaves

as 1/x for small x and vanishes like (1 − x)3 for large values of x.

The 1/x dependence can be thought of as the unwillingness of the virtual photons

to be too far off-shell. This is the distinguishing characteristic of Dalitz pairs. Figure 2.2

shows the distribution of e+e− masses predicted by the tree-level partial width, on a

logarithmic scale.

While the single Dalitz process can be used to study the electromagnetic form

factor when one photon is virtual, like the two–photon process, it is not sensitive to

the CP nature of the pion. As discussed previously, one must measure the correlation

between the planes of polarization of the two photons. The next section will show how

this is accomplished in decays in which both photons are virtual.
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Figure 2.2: Predicted distribution of e+e− invariant masses in π0 → e+e−γ decays
shown on a logarithmic scale.

2.4 The π0 → e+e−e+e− Decay

The π0 → e+e−e+e− mode proceeds through the two-virtual-photon diagram

shown in Figure 2.3. The final state contains two e+e− pairs and therefore has an

exchange contribution where, for instance the two positrons are switched, as shown

in Figure 2.3. As with any mode with charged particles in the final state, there are

radiative graphs that must also be considered. The next section will present a tree-level

analysis of the differential partial width with respect to e+e− masses and the angle

between the two planes of the Dalitz pairs. The remaining sections will discuss the

radiative decay π0 → e+e−e+e−γ and its relationship to radiative corrections to the

double Dalitz decay.
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Figure 2.3: The two contributions to the double Dalitz decay at tree level.

2.4.1 Tree-Level Differential Partial Width

The differential partial width for this mode is

d5Γ =
1

2M

∑

|MD + MX|2 d5Φ4, (2.20)

where MD(X) is the matrix element for the direct (exchange) diagram and the sum is

over the 16 helicity states. The 4–body phase space is given by

d5Φ4 =
M4

216π6
λ dx12 dx34 dy12 dy34 dφ, (2.21)

where a factor of 1/4 has been included to account for the two pairs of identical particles

in the final state. The phase space variables, along with other quantities used in this

section, are defined in Appendix A. The x and y variables are equivalent to the single

Dalitz phase space parameters. The φ variable is defined as the angle between the

normals to the two planes formed by the e+e− pairs in the pion CM frame. The allowed

physical region is defined by the following set of equations

x12 ≥ 4m2/M2 x34 ≥ 4m2/M2 √
x12 +

√
x34 ≤ 1, (2.22a)

−λ12 ≤ y12 ≤ λ12 − λ34 ≤ y34 ≤ λ34, (2.22b)

0 ≤ φ < 2π. (2.22c)

The squared matrix element for the double Dalitz decay, summed over final state
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helicities, is

∑

|MD|2 =
28π2α2g̃2

M2ω4

(

A sin2 φ + B cos2 φ + C sin φ cos φ + D sin φ + E cos φ + F
)

,

(2.23)

where

A = ω2{f2
P cos2 ζ λ2

[

1 + (1 − λ2
12 + y2

12)(1 − λ2
34 + y2

34)
]

+ f2
S sin2 ζ z2

[

(1 − λ2
12 + y2

12) + (1 − λ2
34 + y2

34)
]

}, (2.24a)

B = ω2{f2
S sin2 ζ z2

[

1 + (1 − λ2
12 + y2

12)(1 − λ2
34 + y2

34)
]

+ f2
P cos2 ζ λ2

[

(1 − λ2
12 + y2

12) + (1 − λ2
34 + y2

34)
]

}, (2.24b)

C = 2 fP fS sin ζ cos ζ cos δ λ z ω2 (λ2
12 − y2

12)(λ
2
34 − y2

34), (2.24c)

D = 2 fP fS sin ζ cos ζ cos δ λ ω3 y12 y34

√

(λ2
12 − y2

12)(λ
2
34 − y2

34), (2.24d)

E = 2 f2
S sin2 ζ z ω3 y12 y34

√

(λ2
12 − y2

12)(λ
2
34 − y2

34), (2.24e)

F = f2
S sin2 ζ ω4 (1 − y2

12)(1 − y2
34). (2.24f)

The integrals over the two y variables are trivial and, consequently, the distribu-

tion of the phase space in the y variables is uninteresting. The most dramatic feature

of the phase space can be seen by integrating over φ next. The differential width with

respect to the x variables looks like

1

Γγγ

d2ΓD

dx12dx34
=

α2

18π2

λ12λ34λ

ω2
(3 − λ2

12)(3 − λ2
34)
[

f2
P cos2 ζλ2 + f2

S sin2 ζ(λ2 + 3ω2/2)
]

(2.25)

The differential decay width becomes large when both x12 and x34 are small and vanishes

as either one or both becomes large.

If instead we integrate over the x variables before φ we arrive at the differential
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Table 2.3: Results of integrating numerically over x12 and x34 while assuming α = 0.

Integral I1 I2 I3 I4 I5 I6

Value 7.2287 7.2838 14.509 15.600 15.684 0.0555

width with respect to the angle φ

1

Γγγ

dΓD

dφ
=

α2

12π3
[I1 cos2 ζ sin2 φ + I2 sin2 ζ cos2 φ + I3 sin ζ cos ζ cos δ sin φ cos φ

+ I4 cos2 ζ + (I5 + I6) sin2 ζ],

(2.26)

given in terms of integrals over x,

I1 =
2

3

∫∫

dx12 dx34 f2
P

λ3
12λ

3
34λ

3

ω2
, (2.27a)

I2 =
2

3

∫∫

dx12 dx34 f2
S

λ3
12λ

3
34λz2

ω2
, (2.27b)

I3 =
4

3

∫∫

dx12 dx34 fP fS
λ3

12λ
3
34λ

2z

ω2
, (2.27c)

I4 =

∫∫

dx12 dx34 f2
P

λ12λ34λ
3

ω2
(3 − λ2

12 − λ2
34), (2.27d)

I5 =

∫∫

dx12 dx34 f2
S

λ12λ34λz2

ω2
(3 − λ2

12 − λ2
34), (2.27e)

I6 =
1

6

∫∫

dx12 dx34 f2
S λ12λ34λ (3 − λ2

12)(3 − λ2
34). (2.27f)

Once the form factor is specified the integrals can be done numerically. Table 2.3 gives

the values assuming a flat form factor, α = 0.

Combining terms with similar φ dependence leads to the following useful form,

1

Γγγ

dΓD

dφ
=

α2

12π3
R (1 + κ1 cos 2φ + κ2 sin 2φ) , (2.28)

where

R = (I1/2 + I4) cos2 ζ + (I2/2 + I5 + I6) sin2 ζ, (2.29a)

κ1 =
1

2R
(I2 sin2 ζ − I1 cos2 ζ), (2.29b)

κ2 =
1

2R
I3 sin ζ cos ζ cos δ. (2.29c)
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The constant term R varies from 19.214 at ζ = 0 to 19.381 at ζ = π/2, a change of only

0.9%. The coefficient of cos 2φ changes from −0.1881 to +0.1879 over the same range.

The size of the sin 2φ term depends on the phase difference δ. If δ = 0, the amplitude

is maximum for an equal mixture of scalar-pseudoscalar couplings, at which point it is

equal to +0.1880. In this way, again with δ = 0, the magnitude of the φ dependence is

basically a constant but the phase changes continuously as ζ is varied from 0 to π/2.

The total rate, associated with the direct contribution, is found simply by inte-

grating over φ. The result is

ΓD

Γγγ
=

α2

6π2
R. (2.30)

The rate including exchange contributions is just Γ = 2ΓD + ΓDX since the integrated

rate of the exchange graph is identical to that for the direct graph. The form of the

interference term, ΓDX , can be found in Reference [15]. The effect of the interference is

to reduce the partial width by approximately 1%.

2.4.2 Radiative Decays: π0 → e+e−e+e−γ

There are two channels for the radiative decay mode: the first, shown on the left

of Figure 2.4, is radiation from a double Dalitz final state electron, the second, shown

on the right, is a radiative single Dalitz decay with the radiated photon internally

converting. There are a total of 8 diagrams that contribute, four of each of the two

types.
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1
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e
−
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−

2

e
+
2

e
+

1

Figure 2.4: Two examples of contributions to the radiative double Dalitz decay.
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On average, the Dalitz photon in the second process will be hard, with an energy

near half of the pion mass in the CM frame, or 67MeV. In contrast, the radiative

photon in the first process can be arbitrarily soft. A useful quantity, closely related to

the photon energy in the CM frame, is x4e, where

x4e =
M2

4e

M2
4eγ

= 1 −
2E∗

γ

Mπ0

. (2.31)

The distribution of this quantity, made in a Monte Carlo simulation that is discussed

in Chapter 4, is shown in Figure 2.5. The part of the distribution near x4e ∼ 1 is

dominated by the soft, radiated photons from the first process, while the peak near

x4e ∼ 0 is populated by the Dalitz photons of the second process. The range of x4e is

from (4m)2/M2 to 1.

Figure 2.5: Monte Carlo distribution of x4e.

The rate for the first process diverges as the photon energy approaches zero. In

nature, there must be some cancellation of this divergence since the rate for any process
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Table 2.4: Predicted rate for π0 → e+e−e+e−γ process with two different infrared
cutoffs imposed.

Cutoff Γ4eγ/Γγγ

x4e < 0.9985 6.614 × 10−6

x4e < 0.90 2.055 × 10−6

must be finite. There is a cancellation which comes from other divergent, higher order,

π0 → e+e−e+e− graphs. These will be discussed in the next section in the context of

radiative corrections. For now I will impose an infrared cutoff which can be thought of

as a temporary photon mass. It will be shown in the next section that, after considering

the radiative corrections, all dependence on this artifact will vanish. The Monte Carlo

generator will impose a cutoff on the photon energy, in the CM frame, at 100 keV, or

xcut
4e ≈ 0.9985. The value of the cutoff was selected such as to be well below the range

of experimental sensitivity, which for KTeV extends down to about 2MeV in the pion

rest frame.

The Monte Carlo predictions for the rate, using two different cutoffs, are shown

in Table 2.4. The value of the observable cutoff was chosen to be to be x4e < 0.90 based

on the lower limit on the four electron invariant mass in the observed double Dalitz

decays, which is roughly 128MeV.

2.4.3 Radiative Corrections to the Differential Width

The need for radiative corrections was discussed above to deal with the apparent

divergence in the radiative rate. The new processes that will be considered are the

1–loop diagrams of the double Dalitz decay. Examples of these graphs are shown in

Figure 2.6.

The first diagram shows the vacuum polarization contribution, of which there are

a total of four graphs. The vacuum polarization process is finite in the infrared limit,

but diverges for large virtual-photon momenta. The second diagram is one of four vertex



19

π
0

e
−

2

e
+
2

e
−

1

e
+

1

π
0

e
−

2

e
+
2

e
−

1

e
+

1

π
0

e
−

2

e
+
2

e
−

1

e
+

1

Figure 2.6: Examples of the three types of 1–loop contributions to the double Dalitz
decay: vacuum polarization, vertex correction, and happy face.

correction contributions which diverge in both the infrared and the ultraviolet limits.

The last process, referred to as the happy face process for many personal reasons, also

diverges in both limits. There are a total of 8 happy face graphs. The combination of

the two infrared divergences exactly cancel the divergence in the radiative rate, such

that the total rate for the two modes, double Dalitz and radiative double Dalitz, is

finite. It has been shown that this cancellation is guaranteed to occur at every order

for QED (see for example Reference [23]).

The perturbation expansion of the double Dalitz matrix element, in terms of the

electron charge, looks like

M = Mtree + M1–loop + O(e6). (2.32)

The square of the matrix element is then

|M|2 = |Mtree|2
[

1 +
2Re(M∗

treeM1–loop)

|Mtree|2
]

. (2.33)

The second term in braces is the first order correction to the matrix element squared.
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Table 2.5: The partial width, normalized to the two–photon width.

Branching Ratio Predicted Value

B(4e, tree) 3.421 × 10−5

B(4e(γ), all x4e) 3.536 × 10−5

B(4e(γ), x4e > 0.90) 3.331 × 10−5

B(4e(γ), x4e < 0.90) 2.055 × 10−6

There will be three of these corrections, one for each of the three types of 1–loop graphs.

These corrections are referred to as virtual corrections, as opposed to the brem

correction involving real photons. The part of the radiative rate below the infrared cutoff

contains the divergent term which leads to the consideration of radiative corrections,

but it also contains finite terms, some of which depend on the cutoff. The exact form

of the corrections can be found in Reference [15].

The Monte Carlo prediction for the partial width at tree level and at first order

are summarized in Table 2.5. The combined width is referred to as Γ4e(γ) to indicate

that the photon may or may not be detectable.

2.5 Current Experimental Picture

Three of the results presented here have been previously measured: the double

Dalitz branching ratio, the π0 form factor, and the pseudoscalar-scalar mixing. The

branching ratio and mixing have only been measured once, in the 1962 Samios experi-

ment [12]. I will discuss that experiment in some detail, after summarizing the results

on the π0 form factor.

The slope parameter of the form factor has been measured in both the single and

double Dalitz modes, with the single Dalitz results being much more precise. However,

the most precise measurement to date is not from π0 decay, but rather from π0 pro-

duction, through e+e− → π0e+e−. The q2’s accessible to this experiment were large

and negative, requiring a significant extrapolation to the range accessible in π0 decays.
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The validity of this result hinges on the assumption that the physics at large, negative

q2 is related to the physics at small, positive q2. While this may be the case, a precise

measurement in the physically allowed region is desirable. Table 2.1 lists the measured

values of the π0 slope parameter.

2.5.1 The 1962 Samios Result

The only other experiment to study the double Dalitz decay of the pion was

performed in 1962 at the Nevis cyclotron at Cornell University by Nick Samios and

collaborators. The group recorded photographs in a bubble chamber triggered by a

stopping π−. More than 800,000 photos were taken and scanned by hand to produce

a final data sample of roughly 200 π0 → e+e−e+e− events. Figure 2.7 shows one such

event.

Figure 2.7: Example of π−p → π0n with π0 → e+e−e+e− recorded in the 1962 bubble
chamber experiment of Samios et al. The point at which the π− stops and the two
electron-positron pairs emerge is just to the upper-left of the center of the photo.

The group reported a branching ratio measurement,

B(π0 → e+e−e+e−)Samios = (3.18 ± 0.30) × 10−5, (2.34)

as well as a study of the φ distribution. The extracted value of the cos 2φ oscillation
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was found to be κ1 = −0.12 ± 0.15, which is inconsistent with the hypothesis of a pure

scalar pion at the 3.6σ level. They also attempted to measure a sin 2φ term, with a

resulting amplitude of κ2 = 0.09 ± 0.13.



Chapter 3

Kaons at the TeVatron

KTeV (Kaons at the TeVatron) was a fixed target experiment that collected

neutral kaon decays (along with hyperon and neutral pion decays) at the Fermi National

Accelerator Lab (FNAL, or more commonly Fermilab) on two separate occasions. The

design goals were two–fold in order to accommodate the two experimental efforts: a

thorough study of rare neutral kaon, pion, and hyperon decays, performed by E799-II,

and a precise measurement of the CP violating parameter Re(ε′/ε), performed by the

E832 experiment.

The two experiments had similar beam line elements and shared many of the

same detector elements along with a data acquisition (DAQ) system. The data used in

this analysis is from the E799-II configuration, and therefore I will focus on a detailed

description of the E799-II setup.1

The experiment was operated in E799-II mode three times. As Figure 3.1 shows,

there were two run periods in 1997 and one in 1999 and early 2000. The data collected

in 1997 from the end of January to the end of March is referred to as the Win97 dataset

while data gathered between the end of July and the beginning of September is known

as the Sum97 dataset. The data collected from September 1999 through January 2000

is simply known as the 99 dataset. For reference, Table 3.1 lists the run ranges of the

three periods.

1 For a description of the E832 configuration, see for example Reference [24]
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Figure 3.1: Periods of data taking.

This chapter will cover the hardware responsible for producing kaons and detect-

ing their decay products. The first part will describe Fermilab’s system of accelerators

leading up to the Tevatron and the proton beam it delivers to the KTeV target. The

target then converts the energy of the proton into a slew of secondary particles, includ-

ing kaons. The secondary beam is filtered and shaped to form two nearly parallel beams

containing mainly neutrons, kaons, and lambdas.

3.1 Fermilab

Fermilab consists of several proton/anti–proton accelerators along with both col-

lider and fixed target experiments. Protons, taken from ionized hydrogen gas, are sent

through a series of pre-accelerators including a Cockroft-Walton accelerator, a linear

accelerator, and a booster. At each stage the protons gain energy and by the time they

reach the booster they are energetic enough to create anti-protons on a target when

in collider mode. In fixed-target mode, the protons continued on to either the Main

Ring in 1997, or the newly constructed Main Injector in 1999. The protons are then

accelerated to 150GeV before being injected into the Tevatron where they will reach a

final energy near 800GeV.
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Table 3.1: Run ranges for the three E799 run periods.

Dataset First Run Last Run

Win97 08088 08913
Sum97 10463 10970

99 14625 15548

In fixed-target mode, the protons are extracted from the Tevatron and delivered

to one or more of the fixed-target beam-lines, including the Neutrino-Muon beam-line

that served KTeV. The proton beam is a bunched beam, meaning that the protons are

concentrated in isolated groups as they are accelerated. The bunches are between 1–2 ns

long and separated by the Tevatron RF period of 19 ns. The protons are accelerated for

20 s, then kept at the 800GeV “flat-top” energy while being slowly extracted for either

20 s (during 1997) or 40 s (in 1999), and then more protons are accelerated. During the

1997 run, the on-spill time was 20 s during which between 2×1012 and 5×1012 protons

arrived at the KTeV target. In 1999, the on-spill time was doubled as was the number

of protons per spill, making the instantaneous intensity about 1.8 × 1011 protons per

second during both run periods.

3.2 The KTeV Beam-line

The KTeV beam-line begins with a BeO target onto which the proton beam

was focused to a width of about 250µm and an angle of 4.8mrad. The beryllium target

was rectangular with dimensions of 3mm× 3mm× 30 cm. This corresponded to about

1.1 interaction lengths. The KTeV coordinate system had its origin at the center of

the target with the +z–axis pointing along the beam direction. The +y–axis was then

defined to point vertically up leaving the +x–axis to point to the left as one looked

downstream from the target.

Many particles were produced in the interaction of the protons with the target,

almost all of which were unwanted. The charged particles, including the primary pro-
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tons, could be removed with magnetic fields. Unstable neutral particles could be limited

by moving the detector far enough away from the target that most would decay before

reaching it. The amount of the remaining types of particles, long-lived or even stable

neutrals, could be reduced through the use of absorbers that differentiate between kaons

and other neutral particles, most importantly photons and neutrons. All of these tech-

niques, along with beam collimation, were employed in the KTeV beam-line, shown in

Figure 3.2.
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Primary Collimator
(NM2TCOLL)

µsweep1
(NM2S2)

µsweep2
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Figure 3.2: KTeV Beam-line. The NM2 enclosure houses the target, beam dump,
sweeper magnets, absorbers and collimators.

A total of four sweeper magnets were employed to remove charged particles from

the beam. The first three were located in the NM2 enclosure while the last was located

in the NM3 enclosure just upstream of the KTeV Hall. The target sweeper, located

between 0.4m and 4.4m, gave a 475MeV/c kick in the −y-direction to any charged

particles in the beam. The kick directed the protons into the primary proton dump,

a 4.5m water-cooled cooper block positioned below the beam. Starting at 12.3m was

µsweep1, which delivered a kick of 3806MeV/c in the +x-direction. Further down-

stream was µsweep2, which gave a kick of either 3135MeV/c in Win97 and 1854MeV/c
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thereafter. The final sweeper magnet was located near 90m at the beginning of the de-

cay volume. One additional magnet resided in the NM2 enclosure. The spin rotator

dipole, located near 33m, was used to alter the polarization state of neutral hyperons,

like the Ξ0 and Λ0.

Between the two sweeper magnet was the lead absorber which consisted of a

3 in lead wall. The 14 radiation lengths of lead were in place to remove photons created

at the target by converting them into e+e− pairs which could then be swept out of the

beam.

The remaining elements were designed to shape the two secondary beams. The

primary collimator, located just downstream of the absorber, consisted of a brass

block with two rectangular holes. The size of the holes was 1.18×1.29 cm in Win97 and

1.62×1.73 cm for the rest of the data taking. The slab collimator located between the

two beams to keep particles from crossing over, was only used in the Win97 period. The

final collimator, located at 85m, was called the defining collimator and had square

holes of 4.4 × 4.4 cm in Win97 and 5.2 × 5.2 cm for Sum97 and 99.

The target was monitored by the 90◦ target monitor. This detector consisted

of three counters inside a small hole in the target pile perpendicular to the beam. A

special trigger used the instrument to collect accidental events to be used by the

Monte Carlo program to simulate activity uncorrelated with any kaon decays. This

“noise” was composed of junk from the target, beam interactions with the detector

material, and cosmic rays.

3.3 The KTeV Detector

The KTeV detector was designed to measure all of the kaon decay particles save

the elusive neutrino. The relativistic boost factor for kaons with energies on the order

of 100GeV is about γ ≈ 200, which sets the relative scale of the detector. The KTeV

detector began 90m downstream of the target and extended for over 100m more. Fig-



28

Table 3.2: Ring counter geometry.

Counter z Position (m) Outer Radius (m) Inner Aperture (m)

RC6 132.6 1.00 0.84 × 0.84
RC7 138.6 1.00 0.84 × 0.84
RC8 146.6 1.44 1.18 × 1.18
RC9 152.6 1.44 1.18 × 1.18
RC10 158.6 1.44 1.18 × 1.18

ure 3.3 shows a 3-D representation of the detector in E799-II mode. In this figure the

scale of the z–axis is half the scale of the transverse dimensions. In E799 mode, two

parallel KL beams entered the decay region near 90m. The decay region was evacuated

and kept at a pressure of 1.0 × 10−6 Torr.

The following sections describe the individual detector elements shown in Fig-

ure 3.3 in the context of this analysis.

3.3.1 The Decay Region

The decay region consisted of an evacuated cylindrical tank starting near 90m and

ending at a Kevlar window at 158m. The tank was kept at a pressure of 1.0×10−6 Torr.

The diameter of the tank at its furthest upstream point was roughly 0.5m while at the

window it was 1.8m. The vacuum window was 0.0156% of a radiation length thick.

3.3.1.1 Ring Counters

At several locations along the length of the vacuum tank were ring shaped coun-

ters designed to detect particles leaving the decay region at high angles. These ring

counters (RC) had a circular outer aperture with a square inner aperture. Each RC had

16 overlapping segments consisting of 24 lead-scintillator layers totaling 16 radiation

lengths of material. Table 3.2 lists the geometry of the five RC vetoes. RC7 served as

the defining aperture the veto system.
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Figure 3.3: The KTeV Detector. The axis parallel to the beam defines ẑ and is shown
elongated by a factor of 2 × 1 relative to the transverse directions.

3.3.2 The Charged Spectrometer

The spectrometer consisted of a set of four drift chambers and an analysis mag-

net. The chambers provided position measurements in both x and y with a resolution
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Table 3.3: Geometry of the charged spectrometer.

z Position (m) x × y Dimensions (m)

DC1 159.4 1.30 × 1.30
DC2 165.6 1.64 × 1.44
Magnet 170.0 2.90 × 2.00
DC3 174.6 1.74 × 1.64
DC4 180.5 1.90 × 1.90

of 100µm. They were positioned with two upstream and two downstream of a dipole

magnet which imparted a 205MeV/c (150MeV/c) kick in the x-direction during 1997

(1999). The magnitude of the kick was decreased in 99 in order to increase the accep-

tance for modes with four tracks. The polarity of the magnet was reversed periodically

in order to remove any systematic bias related to detector symmetry. Table 3.3 lists the

geometry of the spectrometer. A bag filled with helium was placed between adjacent

chambers in order to reduce multiple scattering of tracks.

3.3.2.1 Drift Chamber

The drift chambers (DC) consisted of a set of anode “sense wires”, in an argon–

ethane gas, surrounded by cathode “field wires” that created large potential wells around

each sense wire. Charged particles passing through the chamber ionize the gas and the

potential accelerates the ionization toward the nearest sense wire where an electron

avalanche occurs. By knowing the characteristic drift velocity of the ionization, a mea-

surement of the arrival time of the ionization yields the distance at which the charged

particle passed. In order to determine on which side of the wire the track passed, two

planes of offset sense wires were used. The geometry of a plane pair is illustrated in

Figure 3.4 along with a cartoon of the ionization signature of a typical charged particle.

The field wires were made of 25µm diameter gold-plated tungsten while the sense

wires were 100µm gold-plated aluminum. The sense wires were spaced at 12.7mm

intervals, making the cell size of a plane pair 6.35mm. The field wires were maintained
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Field Wires
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Figure 3.4: Drift chamber plane pair geometry and illustration of ionization process.

at roughly 2500V above the sense wires, resulting in a mean drift velocity of 50µm/ns.

At this speed the maximum drift time was less than 150 ns.

Each chamber was instrumented with pre-amplifiers which relayed signals on the

sense wires to a set of discriminators. The discriminated signal then started the timing

window of a time-to-digital converter (TDC). The end of the window was marked by a

common stop supplied by the Level 1 trigger logic described later.

3.3.2.2 Spectrometer Anti

Surrounding each of the drift chambers save DC1, were more vetoes whose purpose

it was to detect particles exiting at high angles. These large detectors were designed

and built in Boulder by the Colorado group. The geometry of the chambers was square

and therefore so was the geometry of the spectrometer antis (SAs). Otherwise they

were nearly identical to the ring counters discussed above, with 32 layers (16 radiation

lengths total) of lead-scintillator. Table 3.4 lists the geometry of the three SA counters.
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Table 3.4: Geometry of the spectrometer anti’s.

Counter z Position (m) Outer Dimension (m) Inner Aperture (m)

SA2 165.1 2.50 × 2.50 1.54 × 1.37
SA3 174.0 3.00 × 2.40 1.69 × 1.60
SA4 180.0 2.37 × 2.37 1.75 × 1.75

3.3.2.3 Spectrometer Calibration

The precision of the momentum measurement depends on two thing: how well the

track positions at each chamber are known and how well the magnetic field is known. An

accurate track position measurement requires both knowledge of the absolute position,

in three dimensions, of all wires in all chambers as well as a map to convert drift times to

distances for all wires. Both the wire positions and the conversion maps (X(t)) can be

measured from the data. As for the magnetic field, once the track position information

is calibrated, K → π+π− events can be used to fix the mean field strength. The fringe

fields away from the bend plane were also measured in the data.

The first step to calibrating the chambers was the determination of the timing

offset (T0) of every signal coming into the TDC modules. The offsets were due to signals

traveling different distances, both within a chamber and also between the chambers and

the TDC’s. The T0 for each wire was found by studying the TDC count distribution in

clean KL → πeν (Ke3) events and determining the time of the early edge.

With the offsets in hand, the X(t) maps could be reliably calculated. The data

used for this purpose was collected during special runs called muon runs during which

the beam stops were closed and the sweeper and analysis magnets were turned off.

Assuming that these straight-through muons uniformly illuminated every cell, the time-

to-distance conversion factor at time t can be found from the distribution of TDC counts

before and after t.

The next step addressed the wire positions within the chamber along with the
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chamber positions within the overall detector. The wire positions within the chambers

were surveyed both before and after the experiment ran. The chambers were aligned

with each other using data from the muon runs mentioned above. Special tracking

algorithms were used to find tracks based on DC1 and DC4 only. These tracks were

then interpolated to DC2 and DC3 where the difference between actual hit positions

and the interpolation is partially due to misalignment of the two inner chambers with

respect to the fixed outer chambers. The overall spectrometer was then aligned with

respect to the target and the calorimeter using K → π+π− and Ke3 events, respectively.

After the spectrometer has been calibrated, the resolution on the track momentum

is approximated by

σ(p)

p
= 0.38% ⊕ 0.016% · p, (3.1)

with p measured in GeV/c. The constant term is due to multiple scattering while the

linear term is due to the resolution on the bend angle of the track. For a typical charged

particle with a momentum of 10GeV/c, the momentum resolution is about 0.4%.

3.3.3 The Transition Radiation Detectors

A set of eight transition radiation detectors (TRDs) was located downstream of

chamber 4 in E799 mode. These detectors can be used to discriminate between charged

pions and electrons since the energy of transition radiation is inversely proportional to

the particle mass. At KTeV energies, electrons and pions produce x-rays in a radiator;

the x-rays are detected by a multi-wire proportional chamber (MWPC). Each plane had

two 15 cm square regions where the radiator was removed and the wires deadened, to

reduce beam interactions. The pion rejection was roughly 300:1 with a 90% efficiency for

electrons. The position of the 8 planes is listed in Table 3.5. The TRDs were not used

in the trigger or off-line selection of the double Dalitz data. For a detailed description,

see Reference [25].
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Table 3.5: Positions of the eight transition radiation detector planes. The transverse
dimensions of each plane is 2.1 × 2.1m.

Plane z Position (m)

TRD1 181.1
TRD2 181.4
TRD3 181.7
TRD4 182.0
TRD5 182.3
TRD6 182.7
TRD7 183.0
TRD8 183.3

3.3.4 Trigger Hodoscopes

The trigger used a prompt signal from a set of scintillator planes located imme-

diately upstream of the calorimeter to identify events with charged particles that had

passed through the spectrometer and would likely hit the calorimeter. These planes,

known as V V ′, consisted of 1 cm thick paddles arranged so that paddles in different

planes overlapped. There were two holes, 14 cm square, in each plane to allow the beam

to pass through.

3.3.5 The Electromagnetic Calorimeter

The heart of the KTeV detector was the electromagnetic calorimeter made of

3100 individual cesium iodide (CsI) crystals. The calorimeter was designed to contain

every electromagnetic shower and at the same time have sensitivity to minimum ionizing

particles (MIP) like muons. This analysis relied on accurate measurements of both the

energy and the position of electromagnetic clusters.

3.3.5.1 CsI Array

The calorimeter consisted of an array of 3100 pure CsI crystals. There were 2232

small crystals measuring 2.5×2.5×50 cm, and 868 large crystals measuring 5×5×50 cm.
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The 50 cm of CsI was equivalent to 27 radiation lengths and to 1.4 nuclear interaction

lengths. This means that practically all EM showers would be contained and roughly

30% of the charged pions would shower hadronically. Muons were usually minimum

ionizing in the CsI and would deposit about 320MeV of energy. The array was arranged

with the small blocks in a square surrounding the two 15 cm square beam holes. The

large blocks were then located around the inner square of small crystals. The whole

array measured 1.9 × 1.9 × 0.5m. A sketch of the array is shown in Figure 3.5.
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Figure 3.5: Sketch depicting the upstream face of the CsI array.

The CsI crystals produced roughly 20 photoelectrons per MeV of energy de-

posited [26]. The light output of the CsI crystals had two components, one fast and

one slow. The fast component had a characteristic decay time of 25 ns while the decay

time for the slow component was greater than 1µs. The longitudinal response of each

crystal was tuned by wrapping each block in 13µm of mylar. Attached to each crystal

was a clear rubber cookie which optically joined the back of the crystal to the front of

the PMT. The cookie contained a filter to remove the slow component of the light. The

output of each PMT went to a special DPMT circuit for digitization. These boards

consisted of an ADC and a charge integrator and encoder (QIE). The circuit contained
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a buffer that was only read out at the request of the Level 1 trigger, in which case every

channel with any data was fed into a VME pipeline to await a final decision from the

Level 2 trigger.

3.3.5.2 CsI Anti

At the outer edge of the calorimeter and overlapping the last row of crystals was

the last photon veto, the CsI anti (CIA). The CIA had the same composition as the

SAs described earlier. It was located at 185.2m in z, with an outer and inner aperture

of 2.20 × 2.20m and 1.84 × 1.84m, respectively.

3.3.5.3 Collar Anti

The collar anti (CA) was comprised of two square rings positioned around each

of the two beam holes, overlapping the inner half of the first row of crystals. It was

designed to veto events with particles hitting near the edge of the calorimeter and

possibly losing a significant amount of energy down the beam hole. Each module was

roughly 10 radiation lengths of tungsten-scintillator layers. Each CA had an outer

dimension of 18 × 18 cm with an inner aperture of 15 × 15 cm. The nominal z position

was 185.9m.

3.3.5.4 Hadron Anti

The hadron anti (HA) was used to identify events with charged pions. It was

located downstream of the calorimeter and behind a 10 cm lead wall (at z = 189.0m).

The wall was designed to absorb any electromagnetic showers escaping the CsI and to

create hadronic showers from charged pions. These hadronic interactions were then

detected by the HA, a plane of scintillator counters with holes for the beam to pass

through. Behind the HA was located the first of three steel walls known collectively as

the muon filters. This wall consisted of 1m of steel and had holes for the neutral beam
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to pass through. Its main purpose was to protect the HA from back-splash from the

beam dump just downstream.

3.3.5.5 Back Anti

The back anti (BA) was designed to detect photons which escape by traveling

through one of the beam holes in the calorimeter. It consisted of 30 lead–scintillator

layers in three longitudinal modules (a total of 30 radiation lengths). This detector was

not used in the trigger or off-line selection of the double Dalitz dataset.

3.3.5.6 Calorimeter Calibration

The calorimeter was calibrated in two steps. First, special runs, called laser

runs, were performed every other day or so. A special laser supplied light to every

crystal via optical fibers. The response of the DPMT to the intensity of the light was

recorded. The intensity of the laser light could be adjusted to cover the full range of

the electronics.

The second quantity which had to be calibrated was the conversion between

the charge counted by the QIE and the energy in the crystal. This was done with

the aid of electrons from Ke3 decays. Assuming that the spectrometer has been ad-

equately calibrated, the charge-to-energy conversion can be tuned so that the energy

in the calorimeter matches the momentum of the spectrometer, as it should for highly

relativistic electrons.

The energy resolution of the calorimeter follows

σ(E)

E
= 0.45% ⊕ 2%√

E
, (3.2)

where E is measured in GeV. For a typical cluster with 10GeV of energy the resolution

is about 0.8%. The constant factor is the result of noise, leakage, and non-uniformities

while the energy dependent factor is due to the photostatistics of the scintillation light.
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The position resolution is on the order of 1mm in the small blocks and 2mm in the

large blocks.

3.3.6 The Muon System

The muon system consisted of a set of thick filters and scintillator counters.

Beyond the BA was a 3m steel block that acted as the neutral beam dump. Just

downstream of that was MU2, a plane of counters similar in geometry to the V V ′

hodoscopes. Following MU2 was a final 1m steel wall and two more planes of counters,

known as MU3X and MU3Y. As the names imply, one was segmented in the x-direction

while the other in the y-direction. The entire system accounted for nearly 30 nuclear

interaction lengths, meaning that only about 0.5% of charged pions could deposit energy

in MU3.

3.4 The KTeV Trigger

The trigger had the awesome task of identifying interesting physics in a very

intense environment. Approximately 1000 protons arrived simultaneously at the target

every 20 ns. The resulting rate of kaon decays was about 1MHz. The trigger was divided

into three levels in order to effectively select and record the small number of interesting

events while rejecting the vast amount of junk. The level 1 (L1) trigger consisted of

the fastest signals combined with simple logic and was capable of making a decision

every RF bucket. Events selected by the L1 trigger were further filtered by the custom

processors forming the level 2 (L2) trigger. The slowest L2 processor took up to 2.5µs

during which the trigger was unable to consider other events. Events passing L2 were

then digitized and read into buffers where they could be analyzed by the level 3 (L3)

software trigger. This program did a partial reconstruction of the event to allow for

more stringent selection criteria. Events selected by L3 were written to one of ten DLT

tape drives to be recorded for offline analysis.
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Up to 32 different trigger configurations could be defined in the data acquisition

system (DAQ). Sixteen of the configurations, known as beam triggers, were dedicated

to the collection of physics modes while the other 16, known as calibration triggers,

collected events for calibration techniques. The data used in this analysis were collected

by the first trigger, called beam trigger 1 (B01) or the 2e-Nclus trigger. The rest of

this section describes in detail the elements used to define this trigger.

3.4.1 Level 1 Trigger

The level 1 trigger was synchronized with the 19 ns RF signal, meaning that only

the fastest signals could be used to make a decision. These included signals from the

Etot system, the V V ′ hodoscopes, the drift chambers, and the vetoes. The sources

were synchronized with cable delays and fed into programmable logic modules which

made the decision to accept or reject once every bucket. The level 1 requirement for

the 2e-nclus trigger can be represented symbolically as

L1 = VV′ · ETOT · DCOR · !VETO (3.3)

Each of these elements will be discussed in turn.

3.4.1.1 VV′

The trigger hodoscopes were designed to provide prompt evidence of at least two

charged particles. Most 2–track events will hit two paddles in each view. To allow for

some level of inefficiency, the trigger required that at least two paddles were hit in one

view and at least one paddle in the other.

3.4.1.2 ETOT

The Etot system received signals from the PMT’s on the calorimeter. The system

performed an analog sum of all 3100 channels representing the total in-time energy. A
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discriminator selected between 4 different thresholds. Trigger 1 used the third threshold,

with a nominal value of 28GeV. The same system was responsible for producing an

HCC bit if any channel was above 1GeV. These bits were used by the Level 2 HCC

processor.

3.4.1.3 DCOR

The DCOR requirement was based on signals from the first two drift chambers.

The maximum drift time of 200 ns limits the amount of information that can be gleaned

from the chambers. However, when the drift time to a wire in one plane is large, the

time in the complementary plane is small. The logical OR of complementary wires can

then be created fast enough for L1. The wires were grouped into 16 “paddles” which

were then OR’d together. Trigger 1 required at least one hit in each of the four upstream

views.

3.4.1.4 !VETO

The rest of the L1 definition consisted of various vetoes. The ring counters had

a nominal threshold of 500MeV. RC8 was only used in veto for runs 8280 through

8283. The spectrometer antis were set to 400MeV, and SA3 was only used from 8088

to 8279. The calorimeter anti and collar anti had thresholds of 400MeV and 13GeV,

respectively. The hadron anti threshold had a nominal value of 5.6MeV.

The muon system was used in veto for the first half of winter97, runs 8088 to

8576. Events were vetoed if there were any hits in the mu2 plane.

3.4.2 Level 2 Trigger

The Level 2 (L2) trigger received events from L1 at a rate of 100 kHz and had to

reduce that by a factor of 10. The time for L2 to make a decision was about 3µs, during

which time the output of L1 was inhibited. A state machine received signals from the
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various L2 processors and made decisions to either accept or reject the event. The level

2 definition of the 2e-Nclus trigger is

L2 = HCC · HCX · HCY (3.4)

The two systems responsible for forming these signals were the hardware cluster

counter (HCC) and the hit counting, which was performed in both x (HCX) and y

(HCY) views of the drift chambers.

3.4.2.1 Hardware Cluster Counter

The HCC element referred to the hardware cluster counting processor associated

with the Etot system. The inputs to the processor were the HCC bits set at L1. Clusters

were found by counting the number of right-hand turns required to trace the outline

of neighboring blocks associated with the HCC bits. The algorithm considered every

possible 2×2 array of crystals. The output was a count between 1 and 8 or an overflow.

Trigger 1 required that the HCC find at least 4 clusters.

3.4.2.2 Hit Counting

The HCX and HCY requirements referred to the outcome of the hit counting

performed by specialized modules developed and built at the University of Colorado.

For a detailed description of the design and usage of the Level 2 hit counting processor,

see Reference [27]. The modules came in two flavors; banana modules monitored the

four upstream views while kumquat modules looked at the four downstream views. The

following sections give a brief overview of each type.

Kumquats There were 35 kumquat modules which received signals from down-

stream views, DC3X, DC3Y, DC4X, and DC4Y. Hits that fell in a 220 ns window were

accepted and counted. A mask was formed with bits set for every wire with an in-time

hit. The number of tracks was counted as N − 1 where N is the number of continuous
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bits. Isolated bits were also counted as one track. To count hits in an entire view,

signals form edge wires had to be sent to multiple modules. The trigger required at

least two hits in both DC3Y and DC4Y.

Bananas The banana modules had a similar purpose, but could better discrim-

inate against out of time pairs. They did this by using TDC’s to measure the correlation

of times between pairs of wires. The TDC window was 464 ns long to allow for very

early or late hits that may accompany an isolated single. The pair of TDC values were

compared to a lookup table to determine whether the hits arrived in-time or not. The

accepted in-time region could be changed by loading different tables into the modules.

The shape used in E799 is shown in Figure 3.6. A mask was formed by setting bits

for accepted in-time hits and the counting algorithm was identical to that used by the

kumquats. The trigger required at least 1 hit in DC2X and at least 2 hits in either

DC1Y or DC2Y with at least 1 hit in the other.

3.4.3 Data Acquisition

The Level 3 (L3) trigger resided in software and filtered data satisfying the trigger

at levels 1 and 2. Events accepted by L2 were first digitized and then feed into buffers.

The output of ADC’s, along with the TDC values from the drift chambers, were read

out on one of six streams. The first four streams contained all of the calorimeter

data, which was sparsified, while the last two contained everything else. The buffers

contained enough memory for an entire spill, about 4.6GB in 97 and 4.9GB in 99. The

contents of the buffers were than processed by four multi-cpu Silicon Graphics Challenge

computers. Each computer contained four planes which received events in parallel. The

processors performed basic reconstruction to identify events with two electrons from a

common vertex. The details of the algorithm are given in the Chapter 5 after general

reconstruction methods are discussed. Events that satisfied the L3 trigger were sent to

tape drives to be written on DLT tapes. These were high density digital tapes with a
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Figure 3.6: Banana TDC counts t1 vs. t2. The top figure contains hits used on tracks
in good 2–track events. The lower figure contains all rejected hits. The in-time pair
region is shown in both.

capacity between 10 and 15GB. The L3 filter also accepted a small number of events

randomly to insure a sample of unbiased data for later trigger studies.



Chapter 4

The KTeV Monte Carlo Simulation

The branching ratio analysis requires a link between the number of observed

events of a given mode and the total number of such events. The ratio of these two

quantities defines the average acceptance. If the acceptance were unity, all decays of

a given type would be observed. In general the average acceptance is much less than

unity. The three main contributors to the acceptance are detector geometry, detector

response, and selection cuts made either at the trigger level or offline. To calculate the

acceptance, a Monte Carlo (MC) program generates kaon decays and simulates these

effects. As it turns out, for many of the KL → π0π0π0 modes there is a 50-50 chance

of detecting any given final state particle due mainly to geometry. This means that an

order-of-magnitude estimate of the acceptance is simply 2−n, where n is the number of

final state particles.

The main parts of the KTeV simulation are kaon selection, decay generation,

detector simulation, accidental activity modeling, and trigger simulation. The end result

is a digitized dataset corresponding to the output of the actual L3 trigger. All of the

code used to implement these effects was written in Fortran and taken together is known

as ktevmc.
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4.1 Simulating Kaons

The simulation begins with the selection of a kaon energy and direction. We do not

simulate the proton or kaon beam, only individual kaon decays. The energy spectrum of

the kaons produced on the KTeV target follows closely the Malensek spectrum measured

from charged kaons [28]. The spectrum, in both momentum and angle, has the following

parametric form,

d2N

dpdΩ
= K p

(1 − x)A(1 + 5e−Dx)

(1 + p2
t /M

2)4
, (4.1)

where x is the ratio of the kaon momentum to the proton momentum, and A, D, K, and

M are parameters extracted from the charged kaon data. The production of neutral

kaons is then assumed to be

σ(K0) ≈ 1

2
[σ(K+) + σ(K−)], (4.2a)

σ(K̄0) ≈ σ(K−), (4.2b)

based on quark composition. The chosen momentum is required to be between 20 and

220GeV/c (the acceptance is practically zero outside this range). Figure 4.1 shows the

distribution of generated kaon momenta.

Once a suitable energy and direction are chosen, the kaon is allowed to propagate

some distance before decaying. The characteristic decay length for a 100GeV KL is

roughly 3 km, making the distribution of decay positions nearly uniform. Only kaons

decaying between z = 90m and z = 160m are further considered. If the kaon hits some

part of the detector before decaying it may scatter or be absorbed. If it does reach the

randomly chosen decay point, the KL → π0π0π0 generator is called to produce the three

pions. The π0 is assumed to decay to two photons unless explicitly asked to decay in

some other way. The next section will discuss the various methods for generating decay

parameters.
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Figure 4.1: Distribution of the kaon momentum in the generated range of 20 to 220GeV.

4.2 Decay Generators

The following sections provide some details on the individual decay generators.

The generators all have the same purpose, generate a set of kinematically allowed final

state 4–momenta.

4.2.1 The KL → π0π0π0 Generator

The decay KL → π0π0π0 is generated uniformly over the allowed phase space,

in agreement with the measured form factor. The 3–body phase space is typically

described by two Dalitz plot variables, such as the invariant mass of two of the three

possible 2π0 states. Such a Dalitz plot is shown in Figure 4.2. The lower and upper

extremes correspond to (2Mπ0)2 and (MK − Mπ0)2, respectively. After boosting into

the lab frame, a π0 has an average energy of roughly 30GeV. At this energy, the decay
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length is less than 6µm, which is orders of magnitude below the vertex resolution. For

this reason, all π0’s are assumed to decay instantaneously.

Figure 4.2: Dalitz plot for KL → π0π0π0 decays at generation.

4.2.2 The π0 → γγ Generator

This 2–body decay is simple to generate, requiring only a direction be specified.

The photons are of course back-to-back in the pion rest frame. Let one of the photons

point in the direction defined by a polar angle θ and azimuthal angle φ. The decay

is isotropic so cos θ and φ should be uncorrelated and distributed uniformly over their

respective ranges. The momenta of the photons are then boosted into the lab frame.
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4.2.3 The π0 → e+e−γ(γ) Generator

The single Dalitz generator produces both π0 → e+e−γ decays and π0 → e+e−γγ

decays with the predicted probability of radiation. A random number is thrown event-

by-event to decide which type of decay to generate. The π0 → e+e−γ generator uses

the tree level matrix element with first order radiative corrections. The radiative decays

are based only on the tree-level π0 → e+e−γγ matrix element and are generated with

the invariant mass of the two-photon system above 1MeV. The probability of radiation

at this cutoff is 16.2%.

4.2.3.1 π0 → e+e−γ

The differential partial width, with respect to the two–photon width, was pre-

sented in Chapter 2. The generator first randomly selects values for the two Dalitz

variables, x and y. Since the distribution of the invariant mass of the e+e− pair is

strongly peaked near threshold, the x variable is chosen according to

dN

dx
= Cx−0.8. (4.3)

Then y is selected from a uniform distribution ranging from −(1 − x) to (1 − x).

The generated point is given a weight equal to its contribution to the differential

partial width (normalized to the two-photon width) modified by a factor to correct for

the biased selection of x values. This requires an evaluation of the tree-level matrix

element, the radiative corrections, and the invariant phase space element. The radiative

corrections were tabulated on a fine grid of x-y pairs. Each weight is converted to a

likelihood by normalizing to the maximum weight. Another random number is picked to

decide whether to keep the generated point or to discard it. If the thrown point is kept,

the momenta receive a random rotation in the pion rest frame before being boosted

into the lab frame. Otherwise a new point is thrown. The efficiency of the generator is

defined as the number of events passing the hit-or-miss divided by the total number of
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events thrown. The efficiency for the π0 → e+e−γ generator is 13%.

4.2.3.2 π0 → e+e−γγ

The radiative single Dalitz decay is generated with the two-photon invariant mass

above 1MeV/c2. The 5-dimensional phase space is complicated by the soft energy

spectrum of the radiated photon and the Bose symmetry of the two photons. The

variables x and xγ are thrown according to power laws, φ is thrown uniformly, and y

and yγ are thrown in a mix of power laws and exponentials. This variables are the same

as those describing the double Dalitz final state with the e+e− composing one pair and

the two photons the other. Again, the differential width is evaluated at the thrown point

and a weight is compared to a random number in a hit-or-miss. Events that pass are

rotated and boosted into the lab frame. The efficiency of the π0 → e+e−γγ generator

is only 2.5% due to the complicated phase space.

4.2.4 The π0 → e+e−e+e−(γ) Generator

The double Dalitz generator is very similar to the single Dalitz generator in that

both non-radiative events (with radiative corrections) and radiative events are produced

in unison. Since there is at most one photon in the final state, the cutoff is expressed in

terms of the photon energy in the pion CM frame. The π0 → e+e−e+e−γ generator only

throws photons with energies E∗
γ > 100 keV. The probability of radiation corresponding

to this cutoff is 18.0%. The distribution of x4e = M2
4e/M

2 at generation, including both

types of events, is shown in Figure 4.3.

4.2.4.1 π0 → e+e−e+e−

The 5 phase space variables defined in Appendix A must be randomly chosen.

The generator selects the two x values according to the same power law spectrum used

by the π0 → e+e−γ generator. The other variables are thrown uniformly. Both the tree-
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Figure 4.3: Distribution of generated x4e values from both π0 → e+e−e+e− and π0 →
e+e−e+e−γ events.

level amplitude and the radiative corrections are evaluated at the thrown point. The

differential width is again used by a hit-or-miss selection. Events passing the selection

are randomly rotated and then boosted into the lab frame.

4.2.4.2 π0 → e+e−e+e−γ

With a probability of roughly 18%, a photon is generated with an energy greater

than 100 keV. For every thrown set of phase space variables, spinors and polarization

vectors are calculated and combined with Dirac matrices to form the complex amplitude

of each diagram.

The distributions of the five double Dalitz phase space variables are shown in

Figures 4.4 to 4.6. The plots are made from all π0 → e+e−e+e− events plus π0 →

e+e−e+e−γ events with x4e > 0.9. These distributions are based on a particular choice
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of the pairing electrons with positrons. Of the two possible pairings, the one which

minimizes the product of invariant masses dominates the matrix element and is the

pairing used to make the plots. Furthermore, the pair within the dominant pairing with

the smaller invariant mass is designated as the a pair while the other is the b pair.

Figure 4.4: Distribution of xa (left) and xb (right). The plots include all π0 → e+e−e+e−

events plus π0 → e+e−e+e−γ events with x4e > 0.9.

Figure 4.5: Distribution of ya (left) and yb (right). The plots include all π0 → e+e−e+e−

events plus π0 → e+e−e+e−γ events with x4e > 0.9.
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Figure 4.6: Distribution of φ. The plots include all π0 → e+e−e+e− events plus π0 →
e+e−e+e−γ events with x4e > 0.9.

4.3 Particle Tracing

After the generation stage there will be a list of decay particles, all located at

the kaon decay point and with initial energies and directions selected by the generators.

Each particle in turn is traced through regions binned in z. To begin with, a particle

is propagated through the remainder of the vacuum chamber. At the z position of each

RC, the transverse position of the particle is compared to the dimensions of the veto.

If a particle strikes a veto, it is considered lost and all of its energy is deposited in the

RC. Particles that do not hit an RC are traced to the vacuum window where they may

interact. The possible interactions that may occur in material are covered below.

Beyond the vacuum window, particles are traced through each element of the

spectrometer. Interactions with the chambers and helium bags are simulated. The

analysis magnet is modeled as a plane containing the majority of the field with small

fringe fields extending away from the plane. As charged particles travel from DC1 to

DC2 and again from DC3 to DC4, their trajectories are adjusted to account for both
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the Earth’s field and the fringe fields. Between DC2 and DC3, charged particles are

traced through a 3-D model of the field in 1 in bins in z. If a particle hits an SA veto, it

deposits all of its energy and is no longer traced. Otherwise, its transverse position at

each chamber plane is recorded. The response of the chambers will be discussed below

in the digitization section.

The MC treats the TRD system as dead material and does not simulate the

response of these detectors. Since the present analysis does not rely on the TRD’s, this

treatment is more than adequate. Particles are next traced to the trigger hodoscopes.

Charged particles will initiate a response in any paddles which they may hit. A TDC

value is calculated for every hit.

Before reaching the CsI calorimeter, each particle is traced to the CIA and the

CA which are handled like the other vetoes. The tracing of electrons and photons ends

at the calorimeter face. The position and energy of the particles are recorded for use by

the digitization described below. The detectors downstream of the calorimeter are not

simulated for the events used in this analysis.

The following sections provide details of the different ways electrons and photons

can interact with material in the detector.

4.3.1 Particle Interactions

The electrons and photons in the double Dalitz final state interact electromag-

netically. The electrons have a mean momentum of roughly 10GeV/c, making multiple

scattering a significant source for measurement error. Another source is energy lost to

radiation, especially when it occurs upstream of the analysis magnet. External radiation

is the dominant background in the radiative double Dalitz analysis. As for the photons,

they can convert to electron-positron pairs, providing a background for any mode with

Dalitz pairs. The amount of material in the detector is summarized in Table 4.1. For a

complete discussion of the amount of material in the detector, see Reference [29].
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Table 4.1: The amount of material in the various components of the KTeV detector.
The amount of air in the Air Gap changed with time; 0.104% in win97, 0.110% in
sum97, and 0.074% in 99. The beam region of a TRD chamber is only 0.51%.

Component Material X/X0 (%)

Vacuum Window mylar, kevlar 0.156
Air Gap air 0.074
DC1 Upstream mylar, wires 0.050
DC1 Downstream mylar, wires 0.045
He Bag 2 helium 0.162
DC2 Upstream mylar, wires 0.045
DC2 Downstream mylar, wires 0.045
He Bag 3a helium 0.119
He Bag 3b helium 0.119
DC3 mylar, wires 0.090
He Bag 4 helium 0.156
DC4 mylar, wires 0.090
TRD (1 of 8) TRD stuff 1.760
V V ′ (1 of 2) scintillator 1.335
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Any bremsstrahlung photons or conversion electrons that are produced due to

interactions are traced through the remaining parts of the detector. Typically, inter-

actions downstream of the magnet are less important since any particles created in an

interaction will travel in the same direction, with the same energy, as the original and

will be indistinguishable.

4.3.1.1 Multiple Scattering and δ–Rays

Multiple scattering refers to the complicated path a charged particle takes when

passing through matter. Constant Coulombic interactions with atomic nuclei can signif-

icantly change the direction of slow moving particles. The effect has been well studied

and the KTeV Monte Carlo applies the standard formula. For a given amount of mate-

rial X/X0, the distribution of probabilities for scattering by an angle θ is approximately

Gaussian with a mean of zero and a width given by

θ0 =
13.6 MeV

βcp
z
√

X/X0 [1 + 0.038 ln (X/X0)] , (4.4)

where βc, p, and z are the velocity, momentum, and charge of the particle. As charged

particles exit material their direction is altered by a small angle chosen from this Molière

distribution.

A δ–rays occurs when the charged particle comes close enough to an atomic

electron to knock it loose. These freed electrons can occasionally travel significant

distances and even produce ionization in the drift chambers. The probability of a

charged particle with energy E producing a δ–ray with an energy T (greater than a

cutoff T0) is

P (T > T0) =

[

15400
keV cm3

gram

]

ZρX

A

1

E
, (4.5)

where Z and A are the atomic number and weight of the material and ρ and X are the

density and amount. During the DC simulation described below, δ–rays are simulated

and may produce additional hits.
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4.3.1.2 Bremsstrahlung

Electrons passing through matter are allowed to radiate a photon of energy k > k0

with a probability given by

P (k > k0) =
X/X0

1 + 18ξ

{

2(1 + 12ξ)

[

k0

E0
− ln

k0

E0
− 1

]

+ 9ξ

[

1 −
(

k0

E0

)2
]}

, (4.6)

where ξ = ln (183/Z
1/3
eff ). The probability of radiation for various parts of the KTeV

detector ranges from about 1.3% in the vacuum window to 14.8% in a TRD chamber. If

this probability is satisfied, the energy and direction of the photon are chosen from the

distribution of the full cross section. Additional details can be found in Reference [27].

4.3.1.3 Photon Conversion

The probability of a photon converting as it passes through an amount of material

X/X0 is

P (γ → e+e−) = 1 − e−
7
9
X/X0 ≈ 7

9
X/X0. (4.7)

When a conversion does occur, the energy of the photon is divided according to the

Bethe-Heitler spectrum

P (e+, e−) ∝ e2
+ + e2

− +

(

2

3
− 1

9Z

)

e+e−, (4.8)

where e± = E±/Eγ and Z ∼ 3.741. The electron and positron travel in a direction equal

to that of the original photon plus a small angle. The simulation of the distribution of

angles is discussed elsewhere [30].

4.4 Digitization

The previous section discussed the simulation of the decay particles and matter

interactions. This section will address the simulation of the detector and its response to

interactions with the particles. For example, a particle is traced to a veto and deposits

all of its energy. The energy is first smeared by some estimate of the resolution of the
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detector in question and then converted to an ADC count for the module which was hit.

A similar procedure is used to obtain the TDC count of hits in the V V ′ hodoscope planes.

In this case, the position of the particle in a paddle relative to the photomultiplier tube

(PMT) is converted to a time based on the characteristics of the scintillator. The time is

then converted to a TDC value for that paddle. The simulation of the drift chambers and

the calorimeter is more complex and will be described separately below. The response

of the TRD chambers is not simulated at all.

4.4.1 Drift Chamber Simulation

The DC simulation takes the intercept of each charged particle at each chamber

plane and creates a signal on the closest wire. This procedure starts by smearing the

distance to the wire by a Gaussian resolution function. The estimate of the resolution

contains two contributions: a global term based on the chamber plane, and a local

term based on the region of the chamber that the hit is in. Both terms were estimated

independently in multiple run periods.

Next, the high SOD tail is simulated. The SOD, or Sum-of-Distances, is defined

in the Chapter 5. The effect is partly due to discrete ionization of the gas. Ideally, the

first ionization electrons arriving at a sense wire were produced at the point of closest

approach. However, due to the discreteness of ionization, the point of closest approach

might not produce ionization. In that case, the distance measured will be bigger than

the actual distance. To simulate this effect, a small distance is added to the modified

hit distance. This correction is based on chamber plane, region, and run period.

The modified hit distance can now be converted to a TDC value, using the inverse

of the X(t) maps described in Chapter 3. The conversion formula is t = t0 + md, where

t0 and m are determined from the map for the appropriate plane and run period.

The digitized hit is subjected to two additional effects: hit inefficiency and δ–rays.

The probability of missing a hit is measured in the data as a function of plane, wire,
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and run period. Hits are removed from the simulation based on this probability. There

is also some probability of producing δ–rays which may produce an early signal in the

cell in which they were produced, or create additional hits in nearby cells. If an extra

hit is produced, its distance is smeared and converted to a TDC.

One additional effect is simulated after all hits in every plane have been dealt with

in the above manner. Each hit produces a signal pulse with a width of about 45 ns.

Starting with the earliest hit on a given wire, any other hits within this window would

be obscured and are therefore deleted. This is then repeated for the next un-obscured

hit on that wire and so-on.

4.4.2 Calorimeter Simulation

The CsI simulation produces clusters based on the location and energy of the

particles traced to the face of the calorimeter and creates a DPMT signal for any crystal

receiving energy above threshold. First the energy of the particle responsible for the

cluster is smeared according to a resolution function based on seed block size, position,

and incident energy.

Then the modified energy is distributed amongst nearby crystals with the aid of

GEANT shower libraries. These libraries contain shower profiles, both transverse and

longitudinal, binned by particle type, energy, and position within the seed block. The

appropriate profiles are then rotated to create a 3-D energy distribution which is then

scaled to match the energy deposited. Some corrections are applied to account for beam

hole effects and transverse energy tails.

Finally, the response of the DPMT associated with each crystal above threshold

is simulated. As described in Chapter 3, the DPMTs were capable of reading out every

bucket, or slice. The incident energy is typically distributed over several slices. Lookup

tables of actual pulse shapes are used to estimate the amount of energy in each slice.
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4.5 Accidental Activity

The simulation up to this point has involved only the decay products of a single

kaon decay. In reality there can be additional particles, coming either from the target

or from other decays, which are uncorrelated with the kaon and its daughter particles.

In order to model this noise, real data collected by the accidental trigger (described

in Chapter 3) is combined with the simulated data in a process known as accidental

overlaying. ADC values are simply added channel-by-channel. For TDC channels,

accidental hits are added to the list of TDC counts and a pulse width is simulated to

see if any of the preexisting hits would be obscured by the accidental hit.

The accidental overlays also provide a way to simulate time dependences on the

scale of one spill. Assuming that the detector conditions are stable, spill-by-spill varia-

tions are due entirely to the beam intensity. The accidental trigger collected events at a

rate roughly proportional to the beam intensity and therefore should reflect these short

term variations. The following section describes how this is accomplished.

4.5.1 Simulating Time Dependence

The time dependence is divided into four scales. The largest time scale corre-

sponds to the data taking periods; win97, sum97, and 99. Most beam line and detector

geometry is stable on this scale. Next come large groups of runs or individual runs for

which various calibration constants are valid. The smallest time period is the spill.

The number of KL → π0π0π0
D events in every run was determined and compared

to the total for all runs to determine a run-by-run yield. This ratio is used by the Monte

Carlo to decide how many events to generate in a given run, such that the distribution

of events by run number is similar to that in the data. Events generated in a given run

receive accidental overlays from that run.

The spill number of the accidental is inherited by the event. It is therefore im-
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portant to have the proper spill-by-spill distribution of accidental overlays. This is

accomplished in two ways: scaling the number of accidentals in each run and identify-

ing bad spills in which no events will be generated. The number of accidental events

in each run is scaled such that the ratio of accidental events to KL → π0π0π0
D events

is roughly equal. Also, spills during which brief, but catastrophic, detector or trigger

failures occurred are not simulated.

4.6 Trigger Simulation

The final stage of the Monte Carlo generator is the simulation of the three levels of

the trigger. The hardware logic is emulated using the TDC or DPMT signals produced

by various detectors. The actual online L3 software filter code is reused by the MC to

simulate its efficiency. For this analysis, the requirements of the 2e-nclus trigger were

imposed.

The L1 trigger uses the ADC values from the vetoes to see if any channels were

above trigger threshold. TDC counts from V V ′ are used to check for sufficiently many

in-time hits. The TDC counts from the drift chambers are combined according the

DCOR logic described in Chapter 3. Lastly, the DPMT data are combined to form an

ETOT sum which is compared to the threshold value.

At level 2, the HCC is simulated using inputs from the ETOT simulation. The

hit counting, performed by the bananas and kumquats, is emulated using the online

monitoring code.

Events that pass the L1 and L2 simulation are processed by the L3 filter code.

The selection criteria are identical to what was used online and the calibration constants

that are used are the same as what was used online. The final output of the Monte

Carlo are the events that pass the L3 filter. The data format is identical to that of the

actual data with the addition of extra bank containing information about the generated

quantities.
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Event Reconstruction

The physical hardware responsible for producing the KTeV dataset was described

in Chapter 3. This raw data, consisting mainly of ADC and TDC counts, must be con-

verted into meaningful quantities like the momenta and positions of final state particles.

This chapter will cover the software algorithms used to identify and to reconstruct events

of interest. The procedures outlined below were all implemented in Fortran and bundled

together, along with many other routines, in a package known simply as ktevana.

The main goal is to find KL → π0π0π0 events in which one of the pions decayed

as π0 → e+e−e+e− and the other two decay as π0 → γγ. Therefore, the selection is

designed to effectively identify 8-body final states consisting of four electrons plus four

photons. To do so, one must reconstruct the decay point of the kaon using the tracks

left by the electrons in the drift chambers. The positions of tracks in the chambers

and the energies of clusters in the calorimeter, along with the decay vertex, allow for a

complete reconstruction of the final state 4-momenta. The first part of this chapter will

describe the details involved in this event reconstruction.

The chapter will close with a description of the preliminary stages of software

filtering, including the L3 filter discussed briefly in Chapter 3. The 2e-nclus trigger data

was then processed by the 2e-nclus crunch to reduce the data volume and separate

events into distinct physics modes. This analysis is based on the 4–track output of the

crunch, which was filtered one last time by the 4–track split to select events with
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either 8 or 9 clusters. The π0 → e+e−e+e− events are from the “4e8c” sample while

the π0 → e+e−e+e−γ events are contained in the “4e9c” sample.

5.1 Reconstruction

A good KL → π0π0π0
DD event should have a well defined 4–track vertex and

eight clean and symmetric clusters, four of which have tracks pointing at them from

the spectrometer. The steps involved in finding the vertex and identifying the photons

include constructing tracks in the spectrometer, identifying clusters in the calorimeter,

and performing a global fit to connect four tracks from a single point to four clusters.

Clusters without associated tracks are assumed to be due to photons.

Figure 5.1 shows the KTeV event display for a 4e8c event. The left-hand side of

the plot provides information about track momenta and cluster energies. The upper

right depicts the front face of the calorimeter, with cluster energies indicated by color.

Below that are two views of the full KTeV detector, the first one from above and the

second from the side. The spectrometer occupies the central right part of each view.

The tracks are seen to bend in the x-view and not in the y-view.

This event is typical of Dalitz events. The two pairs are produced with such small

opening angles that only two tracks are evident in the y-view. It is only because of the

kick from the analysis magnet that the two pairs are detectable at all. The tracking

code, originally optimized for Kπ2 decays, had to be modified to allow multiple tracks

to share the same hits in the y-view, and to allow multiple x-tracks to be paired with

the same y-track.

5.1.1 Tracking

The first task is to find charged tracks in the spectrometer. The general idea is

to find hits in the drift chambers that all lie on a line. Because the chambers measure

x and y positions independently, we can only find track candidates in the x-z and y-z
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KTEV Event Display

/nfs/data18/ktev/toale/split
/4E8C/4E8C.10720.dat

Run Number: 10720
Spill Number: 42
Event Number: 5003193
Trigger Mask: 1
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 8
 ID    Xcsi    Ycsi   P or E
T 1: -0.8609  0.1232   -5.31
C 7: -0.8702  0.1176    5.33
T 2:  0.0707  0.1758  +10.66
C 2:  0.0711  0.1789   10.70
T 3: -0.3201  0.1758   -8.91
C 5: -0.3226  0.1366    8.92
T 4:  0.3848  0.1235   +9.78
C 1:  0.3891  0.1283    9.60

C 3:  0.0757 -0.2607   10.08
C 4:  0.2114 -0.2658    4.49
C 6: -0.1791  0.0909   19.60
C 8: -0.3068 -0.2055   13.58

Vertex: 4 tracks
   X        Y       Z
-0.0853   0.0010  147.168
Chisq=1.25  Pt2v=0.018283
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Figure 5.1: KTeV event display for a 4e8c candidate event.

planes separately. The necessary steps include finding hits in the chambers, identifying

in-time pairs, and then connecting pairs to form tracks.
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5.1.1.1 Hit, Pairs and Sum-of-Distances

When a charged particle passes through a drift chamber it will, under ideal con-

ditions, produce a signal on the sense wire of any cell it passes through. This signal

is referred to as a hit. If the corrected hit time falls within the TDC in-time window

(115 − 350 ns) the TDC count is converted to a drift distance using the X(t) maps

discussed earlier. If there are multiple in-time hits on a given wire, the earliest hit is

used and all other hits are ignored. Two hits on complementary plane-pair wires form

a hit pair. Figure 5.2 shows the distributions of number of hits per events and number

of pairs per event, in both the 97 and 99 4-track data. These events have on average 6

hits per plane and 7 pairs per plane-pair.

Figure 5.2: Distributions of the number of hits per event (left) and the number of pairs
per event (right), in both 97 and 99 2e-nclus 4-track data.

Pairs are further classified by the sum-of-distances (SOD) to each of the two

wires in the complementary planes. Ideally, the SOD is a constant equal to the cell

spacing of 6.35mm, however track angles and hit resolution and inefficiencies smear

the SODs into a distribution that has a central Gaussian peak with a large high-side

tail. Pairs with SODs within 1mm of the nominal value are considered good pairs (a

looser classification of ±1.5mm is used in DC3X and DC4X due to the large angles of
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downstream segments). Figure 5.3 shows the distribution of SODs for all pairs along

with the SODs for pairs used by tracks. The top plot is made from pairs in DC1X while

the bottom one is comprised of pairs from DC3X.

Figure 5.3: Distribution of Sum-of-Distances in the 4-track data. The top plot shows
the SOD of all pairs (clear histogram) and the SOD of pairs used on tracks (green
histogram) in DC1X. The bottom plot shows the same thing but in DC3X.

The low SODs are typically the result of two tracks passing through the same

cell. Each wire will see two hits, one from each track. However, if there are multiple

hits on a wire, only the first, or earliest, hit is used. The pair is then composed of one

hit from each track and the resulting SOD is too small. High SOD pairs are expected

due to discrete ionization sites, but is enhanced by inefficiencies in the detection of the

first ionization. Isolated singles are due to in-time hits without a hit on complementary

wires. These single hits are defined to have a SOD of zero. Singles are likely due to

physical defects on the sense wires caused by radiation damage. Figure 5.4 shows a
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cartoon of the different types of pairs.

SingleLow SoDGood SoD High SoD

Figure 5.4: Cartoon of various pair configurations.

5.1.1.2 Tracks

Tracks are found first in the y-view using all four chambers and then in x-view as

segments upstream and downstream of the analysis magnet. Since the magnet does not

bend tracks in the y-view, a good track should have 4 pairs, one in each y-view, all lying

on a straight line. The algorithm for finding y–tracks begins by considering all possible

lines connecting each hit in DC1Y to each hit in DC4Y. For each such line, DC2Y and

DC3Y are checked for hits lying close to the line. If hits are found, the sum of pair

values is calculated and used to identify good tracks to save. The selection required a

track to have at least two good SOD pairs and no more than one isolated single. Some

amount of sharing of hits between different tracks was allowed.

The tracks in the x–view were formed in two segments, one upstream of the

analysis magnet and one downstream. The upstream leg could contain as many as two

bad SOD pairs or one single. The downstream leg was required to use at least one good

SOD pair. An x–track was then formed by locating pairs of segments that matched to

better than 6mm at the bend plane. A full x–track could use no more than two bad
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SOD’s, or one bad SOD and one single. Figure 5.5 contains an expanded view of the

event display focusing on the tracks in the spectrometer. Note the amount of hit-sharing

in the y-view and how the two tracks in y are shared by the four tracks in the x-view.

KTEV Event Display

/nfs/data18/ktev/toale/split
/4E8C/4E8C.10720.dat

Run Number: 10720
Spill Number: 42
Event Number: 5003193
Trigger Mask: 1
All Slices

Track and Cluster Info
HCC cluster count: 8
 ID    Xcsi    Ycsi   P or E
T 1: -0.8609  0.1232   -5.31
C 7: -0.8702  0.1176    5.33
T 2:  0.0707  0.1758  +10.66
C 2:  0.0711  0.1789   10.70
T 3: -0.3201  0.1758   -8.91
C 5: -0.3226  0.1366    8.92
T 4:  0.3848  0.1235   +9.78
C 1:  0.3891  0.1283    9.60

C 3:  0.0757 -0.2607   10.08
C 4:  0.2114 -0.2658    4.49
C 6: -0.1791  0.0909   19.60
C 8: -0.3068 -0.2055   13.58

Vertex: 4 tracks
   X        Y       Z
-0.0853   0.0010  147.168
Chisq=1.25  Pt2v=0.018283
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Figure 5.5: KTeV event display for a 4e8c candidate event showing the reconstructed
tracks in both the x-view (top) and y-view (bottom).

5.1.2 Clustering

The clustering process reconstructs the position and the energy of both electrons

and photons in the calorimeter. The cluster reconstruction algorithm can be used in

two ways: hardware clustering based on the L2 HCC seeds, or software clustering
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designed to find any local maximum of energy. The two methods may be used separately

or in unison. For final states containing muons and charged pions, the software clustering

is important for finding minimum ionizing particles and partial hadronic showers. This

analysis uses only the hardware clustering method.

The hardware clustering algorithm starts with the seeds found by the L2 HCC

discussed in Chapter 3. An initial energy is calculated based on the energy in the

vicinity of the seed block. The energy is summed over a 7 × 7 grid of small crystals or

a 3 × 3 grid of large crystals.

This energy is then used to find the transverse position of the cluster in the

calorimeter. Look-up tables are used to convert between the energy distribution within

the square grid of crystals to a position within the seed block. The table takes as

inputs all of the ratios of the energy in the row and column containing the seed block

to all other adjacent rows and columns. The output is a position with a resolution of

roughly 1mm in the small crystals and 1.8mm in the large crystals. Figure 5.6 shows

the distributions of reconstructed cluster energies in the 99 4-track data as well as the

number of clusters per event in both 97 and 99.

Figure 5.6: Distributions of the reconstructed cluster energies in the 99 2e-nclus 4-track
data (left) and the number of clusters per event in the 97 data (top right) and in the
99 data (bottom right).
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After all HCC seeds are treated in this way, a series of corrections are applied

to each cluster. Some corrections pertain to the cluster as a whole while others are

concerned with individual crystals within the cluster. Each correction will be discussed

in detail below.

5.1.2.1 Clustering Corrections

There are five corrections applied to individual channels within clusters and three

scale factors applied to cluster energies as a whole. The channel-by-channel corrections

go by the names: overlap, neighbor, missing energy, sneaky energy, and threshold. The

scale factors are known as: transverse, intrablock, and non-linearity. A typical cluster

topology is shown in Figure 5.7. The HCC seeds are indicated by the crystals with

dark borders. The two clusters shown overlap and one is adjacent to a beam hole. The

corrections are intended to compensate for these common occurrences.

The overlap correction is applied when two 7 × 7 grids overlap. The correction

simply divides the energy in the common crystals, assigning some each of the two

clusters. If two clusters neighbor each other without actually overlapping, the energy

in crystals along the boundary is adjusted to compensate for the presence of the other

cluster. If a cluster lies near a beam hole or the outer edge of the calorimeter, a correction

is applied to account for energy in the missing crystals. Next, if a cluster is close to

a beam hole, a sneaky energy correction is applied to regain energy that might have

passed across the beam hole into crystals on the other side. The final channel correction

accounts for crystals within clusters that had energy below threshold and were therefore

not read out.

The first scale factor accounts for cluster energy outside of the 7 × 7 array (or

3 × 3 in the big crystals). Next, a correction to account for the non-uniform response

as a function of the intrablock position of the cluster is applied. The final correction

compensates for the non-linear response of the calorimeter as a function of cluster energy.
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KTEV Event Display

/nfs/data18/ktev/toale/split
/4E8C/4E8C.10720.dat

Run Number: 10720
Spill Number: 42
Event Number: 5003193
Trigger Mask: 1
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 8
 ID    Xcsi    Ycsi   P or E
T 1: -0.8609  0.1232   -5.31
C 7: -0.8702  0.1176    5.33
T 2:  0.0707  0.1758  +10.66
C 2:  0.0711  0.1789   10.70
T 3: -0.3201  0.1758   -8.91
C 5: -0.3226  0.1366    8.92
T 4:  0.3848  0.1235   +9.78
C 1:  0.3891  0.1283    9.60

C 3:  0.0757 -0.2607   10.08
C 4:  0.2114 -0.2658    4.49
C 6: -0.1791  0.0909   19.60
C 8: -0.3068 -0.2055   13.58

Vertex: 4 tracks
   X        Y       Z
-0.0853   0.0010  147.168
Chisq=1.25  Pt2v=0.018283
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Figure 5.7: KTeV event display for a 4e8c candidate event.

5.1.3 Vertexing

The process of vertexing pulls together the tracks in both the x and y views and

the clusters in the calorimeter to form a 3-D trajectory for each charged particle. The

algorithm could be used to look for any number of oppositely charged pairs of particles

originating at a common vertex. The data used in this analysis required the existence

of a 4–track vertex.

The first step in forming a vertex is to find sets of y–tracks which intersect, within

2mm, in the decay volume. The same is then done with the upstream x-track segments.



71

In order to tie the two views together, vertex candidates in each view are matched to

clusters. Each track is projected to the calorimeter where its position is compared to

the position of all of the clusters. If the minimum distance is less than 7 cm the track

is said to match the cluster in that view. Tracks in x and in y that match to the

same cluster, and project to within 1.5 cm of each other at the calorimeter, were paired

together. At this point corrections are applied to the tracks to account for effects like

alignment and fringe fields from the analysis magnet. For each vertex candidate, two

quality parameters were calculated: the vertex χ2 based on how well the tracks intersect

at the vertex, and the offmag χ2 based on the matching of the tracks at the magnet

bend plane. The candidate with the smallest combination of these two quantities was

selected as the final vertex. Figure 5.8 provides an indication of the resolution in the

vertex position in z. The mean resolution in both data periods is less than 25 cm.

Figure 5.8: Vertex z resolution.

With the vertex position and track projections in hand, the momentum of each

track can be computed. The momentum is related to the magnitude of the magnetic

field, known from calibration, divided by the bend angle. For every track that matches
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to a cluster we can then form the ratio of the energy of the cluster to the momentum of

the track. This quantity, referred to as E/p, is a measure of the fraction of its energy

a charged particle deposits in the calorimeter. It is usually near one for electrons and

near zero for muons. Charged pions tend to deposit some energy, but rarely more than

80%. Electrons can be reliably identified in this analysis by tracks with E/p > 0.9.

The distribution of E/p for 4-track events is shown in Figure 5.9. The distribution is

broader in 99 due to the degraded momentum resolution associated with the lower kick

delivered by the analysis magnet.

Figure 5.9: Distribution of the energy deposited in the calorimeter divided by the mo-
mentum measured in the spectrometer, for 97 (top) and 99 (bottom).

Finally, photons are identified with clusters that are not associated with any

tracks. The photon momenta are calculated assuming that they originated at the

charged vertex. Figure 5.10 shows a two dimensional distribution of the number of

photon clusters versus the number of electron clusters. The π0 → e+e−e+e− analysis

requires that there are four clusters of each type.

The information available at this point is enough to select candidate events charac-

terized by a good 4–track vertex comprised of electrons along with 4 additional photons.
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Figure 5.10: Two dimensional distribution of the number of clusters identified as photons
versus the number of clusters associated with tracks.

The rest of this chapter covers the early stages of data filtering based on these concepts

and algorithms.

5.2 Data Filtering

The techniques described above were first applied to the data, in a loose form,

online as part of the L3 trigger. The goal was to identify the possibility that a good

vertex existed and that the tracks belonged to electrons. Events tagged by 2e-nclus

trigger and written to tape were eventually processed by two additional filter programs:

first the 2e-nclus crunch and then the 4–track split.

5.2.1 Level 3 Filter

The L3 filter code performed a quick reconstruction, looking for evidence of two

tracks with opposite charge that intersected at a common vertex and matched to two

clusters in the calorimeter. A clustering algorithm similar to that used by the HCC at

L2 required that there were at least 4 clusters. At this point, only a 2-track vertex was
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required. The vertexing procedure will always find a 2-track vertex for events with good

4-track vertices. The fraction of KL → π0π0π0
DD Monte Carlo events that passed the

L2 trigger simulation and also satisfied the L3 filter was roughly 71% in 97 and 75% in

99. Most of the lost events were cut due to insufficient matching between clusters and

tracks due to tracks bent out of the detector by the analysis magnet.

The L3 code also tagged events based on a more thorough analysis. One of two of

these tags were required to be set for the events used in this analysis. The 2encls tag

only required that two tracks have E/p > 0.75. The k3pi0d tag required in addition

that there were at least seven clusters and that the total invariant mass was between

400 and 600MeV/c2.

5.2.2 Trigger 1 Crunch

The trigger 1 crunch was a data reduction and selection process performed in

Boulder, for both the 97 and 99 data, for the general use of the KTeV collaboration.

The goal was to reconstruct events, apply simple selection cuts, and also to remove

unnecessary components of the data stream. The output consisted of a condensed

sample of high quality events, split into ten classes. The ten categories are summarized

in Table 5.1.

The 4-track event selection made three requirements: a proper L3 tag must have

been set, two tracks must have E/p > 0.9, and a 4-track vertex must be found. Fig-

ure 5.11 shows the invariant mass of the four charged particles for events satisfying

these criteria. The events in blue have four tracks with E/p > 0.9. The peak in the

blue histogram occurs at the π0 mass. The rest of the distribution is due primarily to

KL → π+π−π0 with π0 → e+e−γ. The total invariant mass of the events with four

electrons is shown in Figure 5.12. Here, the events in blue contain four photons while

those in green have five photons. The total mass peaks at the KL mass.

The composition of the events with four electrons and four photons can be inferred
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Table 5.1: Summary of Crunch streams and the fraction of trigger 1 events saved to each in 97 and 99.

Stream Name Motive 97 Saved (%) 99 Saved (%)

1 L3RAND Level 3 random accepts 0.33 0.18
2 PI0TEE KL → π0π0π0 with π0 → e+e− 4.20 4.42
3 3T6SC Background studies 0.81 0.89
4 4TRACK 4–track modes (π0 → e+e−e+e−) 3.73 4.45
5 2T8C KL → π0π0π0 with π0 → e+e−γγ 1.21 1.37
6 2PI0EE KL → π0π0e+e− 3.01 5.92
7 3T7C Background studies 0.64 0.64
8 3PI0D KL → π0π0π0 with π0 → e+e−γ 20.6 25.7
9 EEGGG KL → π0e+e−γ 3.19 3.70
10 EEGG KL → π0e+e− 1.22 3.54
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Figure 5.11: Distribution of the invariant mass of the four charged particles in events
in the 4TRACK crunch stream. The events in the blue histogram have all four E/p’s
greater than 0.9.

Figure 5.12: Distribution of the total invariant mass in events which have four tracks
with E/p > 0.9. The events in the blue histogram have, in addition to the electrons,
four photons (4e8c), while those in green have five photons (4e9c).

from the distribution of the invariant mass of the four electrons. Figure 5.13 shows this

distribution. The continuous part of the spectrum is mainly due to KL → π0π0
Dπ0

D
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events, while the events in the peak at the π0 mass are KL → π0π0π0
DD decays. The

total mass versus P 2
T for these events is shown in Figure 5.14, in which the vertical scale

is logarithmic. Good KL → π0π0π0
DD events reside at the bottom of the plot with a

mass near the kaon mass.

Figure 5.13: Distribution of the invariant mass of the four electrons in events with four
photons.

The total number of events selected in the 4TRACK stream of the crunch is

shown in Table 5.2. The total number of 4-track events identified by the crunch is just

over 16 million.

5.2.3 4–Track Split

The 4–track events selected by the 2e-nclus crunch were subjected to one final

stage of filtering to separate events with either 8 or 9 clusters. At this stage all four

tracks of the vertex were required to match to clusters in the calorimeter. About 3.5%

of the 4-track events previously found fail to satisfy the stiffer matching requirement.

The distribution of the number of clusters in the 4-track events is shown in Fig-

ure 5.15. Roughly 6.0% of the events contain 8 clusters while only 0.7% have 9 clusters.
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Figure 5.14: Two dimensional distribution of the total invariant mass versus the trans-
verse momentum squared for events with four electrons and four photons.

The number of events saved with either 8 or 9 clusters is summarized in Table 5.3. The

total number of 4e8c events is about 950,000, while the total number of 4e9c events is

96,000.

Figure 5.15: Distribution of the number of clusters in 4TRACK events.
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Table 5.2: Number of events selected in the 4TRACK stream of the 2e-nclus crunch.

Dataset N4TRACK

Win97 2,830,472
Sum97 2,096,271

99 11,153,592

Total 16,080,334

Table 5.3: Number of events selected to the 4e8c and 4e9c streams by the 4-track split.

Dataset N4e8c N4e9c

Win97 183,126 16,651
Sum97 140,149 13,100

99 633,877 66,290

Total 957,152 96,041



Chapter 6

Double Dalitz Branching Ratio

This chapter discusses the branching ratio measurement for the π0 → e+e−e+e−

mode. The data used to extract the result are from the 4–track, 8–cluster output of

the split that was described in the previous chapter. There are two modes that must

be reconstructed, KL → π0π0π0
DD and KL → π0π0

Dπ0
D. The first mode is referred to as

the signal mode while the latter is known as the normalization mode.

The number of observed double Dalitz events is related to the branching ratio by

Nobs
DD = 3 · FK · B(KL → π0π0π0) · B2(π0 → γγ) · B(π0 → e+e−e+e−) · εDD, (6.1)

where FK is the kaon flux, εDD is the acceptance or efficiency for reconstructing a decay,

and the factor of three comes from the 3π0 combinatorics. The flux is defined as the

number of kaons decaying in the fiducial region while the KTeV detector/trigger was

active and ready to accept events. Since the kaons are neutral they cannot be detected

directly, making it impossible to count them individually. To eliminate the dependence

on the flux I can simultaneously measure two modes and calculate the ratio of events

in each. The number of KL → π0π0
Dπ0

D events observed in the data is

Nobs
2D = 3 · FK · B(KL → π0π0π0) · B(π0 → γγ) · B2(π0 → e+e−γ) · ε2D, (6.2)

where ε2D is the acceptance for the normalization mode and the single Dalitz branching

ratio is taken from the PDG. In the absence of backgrounds, the double Dalitz branching
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ratio is related to the following double ratio

R =
Nobs

DD

Nobs
2D

· ε2D

εDD
=

B(π0 → e+e−e+e−) · B(π0 → γγ)

B2(π0 → e+e−γ)
. (6.3)

Backgrounds will modify this form slightly.

I will first discuss the final selection criteria for both the signal and normaliza-

tion modes. This will be followed by the acceptance numbers from the Monte Carlo

along with specific comparisons between distributions in the data and MC. The residual

background level is also predicted by the Monte Carlo.

6.1 4e8c Reconstruction

The reconstruction begins by finding tracks, clusters and a 4-track vertex, as dis-

cussed in Chapter 5. All four tracks are required to match to clusters in the calorimeter.

The four clusters not associated with tracks are considered photons. Events with a 4-

track vertex plus four photons are subjected to further selection criteria to identify

clean samples of both the signal and normalization modes. These cuts can be separated

into the following categories: data quality, trigger verification, fiducial cuts, kinematic

selection, and background elimination. I will discuss each of these in turn.

6.1.1 Data Quality

The experiment was diligently monitored during data collection, however not all

of the data is of the highest quality. Occasionally whole spills of data were collected

under less-than-ideal conditions. Rather than try to estimate the acceptance of these

bad spills, they are simply removed from the data and not generated in the MC. The

analysis code allows a user to set a mask of bits which refer to 1 of 32 different detector

problems which might have occurred during a given spill. Known problems in every run

are categorized and input into the KTeV database. The masks of bad spill bits used by

this analysis are summarized in Table 6.1. The distribution of bad spill bits in the 4e8c



82

data is shown in Figure 6.1 for each of the three datasets.

Figure 6.1: Distribution of bad spill bits in the 4e8c dataset for each of the three run
periods.

6.1.2 Trigger Verification

All events are subjected to a loose trigger verification in order to remove events

which require accidental coincidence to satisfy the trigger. The veto requirements are

verified by cutting on the energy reconstructed in each module. The RCs, SAs, and CIA

are required to have less than 300MeV of energy in any module. The CA is required

to have less than 13GeV of energy. The muon veto was only used in a small fraction

of the data and is not verified. Figure 6.2 shows the maximum energy in any RC, SA,
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Table 6.1: Definition of bad spill bits and masks used to remove bad spills from the
event sample. Bits 30, 31, and 32 were not used.

Bit Name Win97 Sum97 99
1 Trigger 1 1 1
2 DPMT Ped Exp 1 1 1
3 DPMT Cap ID 1 0 0
4 Blown QIE Comp 1 1 1
5 Dead DPMT 1 1 1
6 DPMT Ped Drift 0 0 0
7 DPMT Gain Drift 1 1 1
8 Broken Dynode 1 1 1
9 Pipe Problems 1 1 1

10 Global CsI Prob 1 1 1
11 Etot 1 1 1
12 Fera ADC 1 1 1
13 DC 1 1 1
14 Veto 1 1 1
15 V-Bank 1 1 1
16 Muon 0 0 0
17 HCC 0 1 1
18 Banana 1 1 1
19 TRD Trigger 0 0 0
20 Hyperon Trigger 0 0 0
21 DAQ 1 1 0
22 Non 799/832 Run 1 1 1
23 Short Run 1 1 1
24 Nonstd TRD HV 0 0 0
25 1 Dead TRD Plane 0 0 0
26 Few Dead Planes 0 0 0
27 TRD HV Sag 0 0 0
28 Severe TRD Prob 0 0 0
29 Beam 1 1 1

Mask 1073EFDF 1073FFDB 1073EFDF
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and CA for the 4e8c dataset.

Figure 6.2: Distributions of the maximum energy deposited in, from left to right, the
RC’s, the SA’s, and the CA’s, for the entire 4e8c dataset (in GeV).

The neutral elements of the trigger are verified by requiring that the total energy

of all the clusters used in the event is greater than 40GeV. The HCC requirement is

automatically satisfied since all events must have 8 hardware clusters. Figure 6.3 shows

the low end of the total cluster energy. The events below the nominal trigger cut of

28GeV contain additional energy not used in the eight hardware clusters.

The charged part of the trigger is verified by extrapolating the tracks from the

vertex to the V V ′ hodoscopes planes and the number of paddles which should have

been hit are counted. In order to account for uncertainties in the exact location of the
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Figure 6.3: Low end of the distribution of total energy (in GeV) in the 8 hardware
clusters.

edges, each paddle is expanded by 1 cm and tracks that pass through this buffer are

assumed to hit both paddles. All 4e8c events pass this loose requirement. The rest of

the charged trigger is assumed to be implicitly satisfied if four good tracks are found.

6.1.3 Fiducial Cuts

A series of cuts are applied to the data to ensure that the reconstruction is as

robust as possible. This typically means eliminating events that may suffer from gross

mis-reconstruction. These cuts include requirements on individual clusters and tracks,

as well as on the vertex itself.

6.1.3.1 Cluster Requirements

There are three cuts specific to clusters in the calorimeter. Each of the eight

clusters is required to have more than 2GeV of energy. This requirement is made to

remove any dependence on the HCC thresholds, nominally between 1.0− 1.5GeV. The

total energy in the calorimeter is required to be between 40 and 210GeV, again to stay
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away from the trigger threshold of ∼ 28GeV. The smallest distance between any two

clusters must be more than 5 cm. Clusters with separations less than this are subject

to large overlap corrections. Figures 6.4, 6.5, and 6.6 show a comparison between

normalization mode data and Monte Carlo events in the three cluster variables.

χ2/dof = 33.7 / 45

Figure 6.4: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of minimum cluster
energies. All other cuts have been applied.

6.1.3.2 Track Requirements

Two cuts are applied to track parameters. The minimum track momentum must

be larger than 2GeV/c. Below this value, the acceptance rapidly drops due to tracks

bending out of the detector in the analysis magnet’s field. The combination of E/p

is required to reconstruct between 0.93 and 1.07. Figures 6.7, 6.8, and 6.9 show a

comparison between normalization mode data and Monte Carlo events. The small

discrepancy in the E/p distributions will be addressed later.
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χ2/dof = 105.3 / 47

Figure 6.5: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of total cluster energy.
All other cuts have been applied.

χ2/dof = 44.3 / 47

Figure 6.6: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of minimum cluster
separation. All other cuts have been applied.

6.1.3.3 Vertex Requirements

Another three cuts are made to ensure the quality of the reconstructed vertex.

The vertex χ2 and magnet χ2 are required to be less than 40 and 100, respectively. In
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χ2/dof = 46.7 / 45

Figure 6.7: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of minimum track
momentum. All other cuts have been applied.

χ2/dof = 7665.9 / 31

Figure 6.8: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of smallest E/p. All
other cuts have been applied.

addition, the z-position of the vertex has to lie between 97 and 157m. Figures 6.10,

6.11, and 6.12 show a comparison between normalization mode data and Monte Carlo

events in the three vertex variables.
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χ2/dof = 4640.9 / 34

Figure 6.9: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of largest E/p. All
other cuts have been applied.

χ2/dof = 201.7 / 49

Figure 6.10: Comparison between normalization mode data (points with error bars)
and normalization mode Monte Carlo (histogram) for the distribution of vertex χ2. All
other cuts have been applied.

6.1.4 Kinematic Selection

At this point each event is tested to see if it represents the complete final state of

a kaon decay, and if so, if it is kinematically consistent with either a KL → π0π0π0
DD or
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χ2/dof = 1637.2 / 49

Figure 6.11: Comparison between normalization mode data (points with error bars)
and normalization mode Monte Carlo (histogram) for the distribution of magnet χ2.
All other cuts have been applied.

χ2/dof = 40.3 / 47

Figure 6.12: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of vertex z-position.
All other cuts have been applied.

KL → π0π0
Dπ0

D decay. This is accomplished first by calculating the total invariant mass

and the total 3-momentum perpendicular to the direction of the kaon. Then a pairing

χ2 is formed to distinguish between the two different KL → π0π0π0 decays.
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6.1.4.1 Kaon Cuts

The total mass must reconstruct in a window from 480 to 515MeV/c2 and the

square of the transverse momentum must be less than 800MeV2/c4. The transverse

momentum is defined as the component of the total momentum of the reconstructed

final state perpendicular to the direction of the kaon. The direction of the kaon is

given by the line connecting the target to the reconstructed decay vertex. These cuts

ensure that all decay products of the kaon were observed. Figures 6.13 and 6.14 show

a comparison between the normalization mode data and Monte Carlo in these two

quantities.

χ2/dof = 66.8 / 49

Figure 6.13: Comparison between normalization mode data (points with error bars)
and normalization mode Monte Carlo (histogram) for the distribution of total invariant
mass. All other cuts have been applied.

6.1.4.2 Pairing χ2

At this point it is necessary to distinguish between the signal and the normaliza-

tion modes. This is accomplished by testing two hypotheses on each event and selecting
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χ2/dof = 134.8 / 49

Figure 6.14: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) for the distribution of the square of the
transverse momentum. All other cuts have been applied.

the more likely result. The test functions, ignoring correlations, are

χ2
DD =

(M4e − M)2

σ2
4e

+
(Mγγ1 − M)2

σ2
γγ

+
(Mγγ2 − M)2

σ2
γγ

, (6.4a)

χ2
2D =

(Meeγ1 − M)2

σ2
eeγ

+
(Meeγ2 − M)2

σ2
eeγ

+
(Mγγ − M)2

σ2
γγ

. (6.4b)

The resolutions on the three masses are σ4e = 1.60MeV/c2, σeeγ = 1.71MeV/c2, and

σγγ = 1.50MeV/c2. Correlations are accounted for.

For each of the final states there is an ambiguity as to the pairing of the particles

into the three π0’s. For the signal mode, there are three possible combinations, all

of which are tested. The most likely KL → π0π0π0
DD pairing is the one with the

smallest χ2
DD. The normalization mode has a 24-fold ambiguity. All 24 possibilities

are considered and the one with the smallest χ2
2D is selected. The best χ2’s for each

hypothesis are then compared, with the smaller one determining the type of decay. The

overall best χ2 is then required to be less than 12.

Figure 6.15 shows a comparison between the normalization mode data and Monte
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Carlo in the reconstruction χ2 variable. The disagreement near the peak of the distri-

bution is due to cluster energy mis-reconstruction at the level of 0.5%. The effect is

not a concern since the cut is placed rather far out on the tail of the distribution. This

disagreement will be discussed further in the context of systematic uncertainties at the

end of this chapter.

χ2/dof = 425.3 / 49

Figure 6.15: Comparison between normalization mode data (points with error bars) and
normalization mode Monte Carlo (histogram) in the reconstruction χ2 variable.

6.1.5 Background Elimination

The final cut that is applied to the data is required to remove the massive number

of external conversion events. Photons which convert upstream of the spectrometer can

mimic tracks from the vertex. The probability of a photon converting in this region

is roughly 0.23%. For a KL → π0π0π0
D decay the probability that one of the five

photons converts is about 1.2%, remarkably close to the single Dalitz branching ratio.

The likelihood of two of the six photons in a KL → π0π0π0 decay converting is on the

order of 8 × 10−5. Table 6.2 lists the conversion probabilities in the three run periods.

The important thing to note is that the probabilities for the background processes are
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Table 6.2: Conversion probabilities in the three run periods. P/γ is the probability of a
photon converting upstream of the spectrometer. P (1|5) and P (2|6) are the probabilities
of one in five, or two in six, photons converting. P (1C) and P (2C) are the combined
likelihood of a KL → π0π0π0

D decay plus one conversion, or KL → π0π0π0 decay with
two conversions.

Probabilities Win97 Sum97 99

P/γ 0.241% 0.246% 0.218%
P (1|5) 1.19% 1.22% 1.08%
P (2|6) 8.63 × 10−5 8.99 × 10−5 7.07 × 10−5

P (1C) 8.84 × 10−5 9.02 × 10−5 8.00 × 10−5

P (2C) 1.76 × 10−5 1.83 × 10−5 1.44 × 10−5

roughly equal to those for the signal and normalization modes. The combined branching

ratio for KL → π0π0
Dπ0

D decays is roughly 9.0 × 10−5.

The distinguishing characteristic of the conversion events is the preference for

very small values of the e+e− mass of the pair, even relative to the Dalitz pairs. This

quantity is closely correlated with the track separation at the first drift chamber. The

level of conversion contamination, following the cuts discussed already, can be seen in

Figure 6.16. This plot shows a comparison between the normalization mode data and

Monte Carlo events in the distribution of minimum track separations at DC1. The

histograms have been normalized above 2mm. The discrepancy in the first bin is due

to conversion events in the data.

The striking difference in the distribution of track separations between the nor-

malization mode Monte Carlo and single conversion Monte Carlo, passing all cuts for

the normalization mode, can be seen in Figure 6.17. While the normalization mode

contains a significant fraction of events with small separations, nearly the entire dis-

tribution for conversion events is below 2mm. Only 0.26% of single conversion events

that pass all other cuts, have track separations greater than 2mm. All remaining double

conversion events are eliminated. This requirement has a significant impact on the both

the signal and normalization modes as well. The efficiency of this cut for normalization
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χ2/dof = 33.6 / 44

Figure 6.16: Comparison between normalization mode data (points with error bars)
and normalization mode Monte Carlo (histogram) in the minimum track separation at
DC1. The disagreement in the first bin is due to the presence of conversion events in
the data.

mode events is just 78.4%.

Table 6.3 lists all of the selection criteria applied to the data. The efficiency of

the cuts is addressed in the next section. Systematic biases resulting from analysis cuts

are discussed later in the chapter.

6.2 Acceptance Calculation

The acceptance for a given decay mode has two components, a geometrical ac-

ceptance and a selection efficiency. The geometrical acceptance is quite simple and only

depends on the detector geometry and the kaon energy scale. As a rule of thumb, the

geometrical acceptance is roughly 50% per particle. For an 8–body final state, a good

estimate of the geometrical acceptance is 0.58 ∼ 0.4%.
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Table 6.3: List of selection criteria. The three sets of cuts are: fiducial, kinematic, and
background.

Variable Accepted Range

Minimum Cluster Energy > 2GeV
Total CsI Energy 40 − 210GeV
Minimum Cluster Separation > 5 cm
Minimum Track Momentum > 2GeV/c
E/p 0.93 − 1.07
χ2

vertex < 40
χ2

magnet < 100

z-Vertex Position 94 − 157m

Total Invariant Mass 480 − 515MeV/c2

P 2
T < 800MeV2/c2

Pairing χ2 < 12

Minimum Track Separation > 2mm
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Figure 6.17: Distribution of minimum track separation at DC1 on a logarithmic scale.
The top plot contains normalization mode Monte Carlo events. The bottom plot con-
tains single conversion Monte Carlo events.

The selection efficiency is divided between the trigger and the offline analysis

requirements. The Monte Carlo events must pass a trigger simulation, the 2e-nclus

crunch, the 4–track split, and the selection cuts discussed in the previous section. The

efficiency of these filters is the subject of the following subsections.

6.2.1 Trigger Acceptance

All three levels of the online trigger are simulated. The efficiency of each level for

KL → π0π0
Dπ0

D events is shown in Table 6.4. The low acceptance at L1 is a reflection

of the kaon energy distribution, much of which is below the ETOT trigger requirement.

Low energy events also tend to have decay particles hit vetoes. The most restrictive

element of the L1 trigger is the V V ′ requirement, due to low momentum tracks being
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Table 6.4: Trigger efficiency for signal and normalization Monte Carlo events in the
three run periods. The trigger acceptance is the product of the three efficiencies.

Dataset Mode L1 L2 L3 Trigger Acceptance

DD 9.3 % 92.7 % 71.1 % 6.1 %
Win97

2D 9.4 % 93.8 % 72.3 % 6.4 %

DD 8.7 % 94.2 % 71.2 % 5.8 %
Sum97

2D 8.9 % 94.9 % 72.8 % 6.1 %

DD 10.7 % 95.8 % 75.0 % 7.7 %
99

2D 10.8 % 96.2 % 76.1 % 7.9 %

bent out of the detector at the analysis magnet.

The L2 and L3 efficiencies are quite high for signal events. The losses at L2 are

due to either the number of hits in the y-view or the number of hardware clusters. The

L3 losses are associated with the inability to find a vertex (only needs to be a 2-track

vertex). Roughly 8% of the events show no evidence of having a good vertex. The

largest loss is due to inadequate matching between tracks and clusters. Close to 17% of

events with some kind of vertex fail to achieve proper matching. The overall acceptance

after the trigger is slightly less than the L1 acceptance.

6.2.2 Filter Efficiencies

The two filters which were used to reduce the data volume were designed to

have a high signal efficiency combined with effective background rejection. Table 6.5

summarizes the filter efficiencies and the overall acceptance after the filters, for the three

run periods. The crunch code performs a full reconstruction of the event and requires a

good 4-track vertex. This requirement accounts for the majority of the loss. The 4-track

split only requires that the total number of clusters is equal to eight. The efficiency is

a direct reflection of the distribution of number of clusters. The acceptance for events

passing the split is about 0.5% in 97 and 0.8% in 99.
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Table 6.5: Filter efficiency for signal and normalization Monte Carlo events in the three
run periods. The filter acceptance is the product of the two filter efficiencies and the
trigger acceptance.

Dataset Mode Crunch Split Filter Acceptance

DD 25.4 % 27.2 % 0.42 %
Win97

2D 30.2 % 26.2 % 0.50 %

DD 26.2 % 28.4 % 0.43 %
Sum97

2D 30.6 % 27.9 % 0.52 %

DD 32.5 % 27.8 % 0.69 %
99

2D 36.7 % 27.3 % 0.79 %

6.2.3 Analysis Efficiency

The final selection requirements are intended to take events with the correct

topology and find good candidates for the two modes of interest. The efficiency of most

cuts is quite high for signal and normalization Monte Carlo events. The one exception is

the track separation cut, which reduces both samples by roughly 20%. I will define the

efficiency of a cut as the number of MC events which pass all cuts divided by the number

of events that pass all cuts other than the one in question. Table 6.6 summarizes the

efficiencies of all analysis cuts for normalization mode MC events.

6.2.3.1 Relationship between the Acceptance and x4e

In light of the radiative events with soft photons, the branching ratio is defined

for a particular photon sensitivity, and therefore the acceptance must be defined accord-

ingly. The double Dalitz branching ratio is measured for x4e > 0.9. The acceptance for

double Dalitz events is then the number of events which pass all selection requirements

divided by the total number generated with x4e > 0.9. Events that pass all cuts but

were generated with x4e < 0.9 represent a background that will be subtracted. Table 6.7

summarizes the acceptance calculation for the double Dalitz sample.

Similarly, the single Dalitz branching ratio in the quantity R must also be ap-

propriately qualified. The results which contribute most to the world average all claim
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Table 6.6: Efficiencies for each cut separately for both the signal and normalization
mode Monte Carlo events.

Efficiency (%)
Cut DD 2D

Minimum Cluster Energy 96.30 93.49
Total CsI Energy 99.34 99.32
Minimum Cluster Separation 96.04 95.87
Minimum Track Momentum 98.50 98.65
E/p 89.28 89.10
χ2

vertex 97.29 96.90
χ2

magnet 94.42 93.53

z-Vertex Position 97.70 97.55
Total Invariant Mass 84.17 87.29
P 2

T 88.84 87.28
Pairing χ2 77.67 75.63
Minimum Track Separation 74.28 72.71

All cuts together 50.47 42.72
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Table 6.7: Acceptance numbers for KL → π0π0π0
DD. The fraction of events generated with x4e > 0.9 is 96.242% of the total. The errors

on the acceptance numbers are from Monte Carlo statistics.

Win97 Sum97 99

Ngen, 4e 18,395,530 13,039,676 30,762,515
Ngen, 4eγ 4,231,521 3,003,896 7,077,099
Ngen, 4e + 4eγ 22,627,051 16,043,572 37,839,614
Ngen, x4e > 0.9 21,776,726 15,440,655 36,417,601
Nacc 42,624 29,880 116,931

εDD (1.957 ± 0.009) × 10−3 (1.935 ± 0.011) × 10−3 (3.211 ± 0.009) × 10−3
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Table 6.8: Acceptance numbers for KL → π0π0
Dπ0

D. The errors on the acceptance
numbers are from Monte Carlo statistics.

Win97 Sum97 99

Ngen 70,560,000 47,040,000 176,400,000
Nana 150,344 99,903 576,210

ε2D (2.131 ± 0.005) × 10−3 (2.124 ± 0.007) × 10−3 (3.266 ± 0.004) × 10−3

to include radiative effects for all values of xγ . That is they measure the total rate

of π0 → e+e−γ and π0 → e+e−γγ. The radiative correction was discussed in Chap-

ter 2. What this means for the acceptance is that the number of generated events

includes all events of each type. Table 6.8 lists the number of events generated, number

reconstructed, and the acceptance for the normalization mode.

6.3 Background Studies

There are two remaining backgrounds after all cuts have been applied. The main

background is from cross-overs between signal and normalization mode events. Occa-

sionally, a KL → π0π0
Dπ0

D event has a better χ2 when reconstructed as KL → π0π0π0
DD,

or vice-versa. This effect is illustrated in Figure 6.18, which shows the distribution of

the best χ2 for both KL → π0π0π0
DD and KL → π0π0

Dπ0
D Monte Carlo events.

The predicted acceptance for crossover events was calculated from the same Monte

Carlo used to get the signal and normalization acceptance quoted above. The acceptance

numbers are given in Table 6.9. The acceptances are accurate to roughly 10% in 97 and

4% in 99.

Table 6.9: Monte Carlo acceptances for crossover events.

Dataset εin DD MC
2D εin 2D MC

DD

Win97 (2.59 ± 0.11) × 10−5 (1.90 ± 0.16) × 10−6

Sum97 (2.78 ± 0.13) × 10−5 (2.13 ± 0.21) × 10−6

99 (5.13 ± 0.12) × 10−5 (3.25 ± 0.14) × 10−6
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Figure 6.18: Distribution of the difference between the best pairing χ2 assuming KL →
π0π0

Dπ0
D and the best χ2 assuming KL → π0π0π0

DD, for KL → π0π0π0
DD Monte Carlo

events on top, and KL → π0π0
Dπ0

D events on bottom. The difference should be positive
for signal events and negative for normalization events. The crossover background is
indicated by the small tails on the wrong side of zero.

The other significant background is from single Dalitz events with an external

conversion upstream of the spectrometer. Even with the large reduction from the track

separation, the MC predicts that this source accounts for roughly 1% of the final event

sample.

Single Dalitz backgrounds were studied by generating KL → π0π0π0
D events and

then forcing one of the photons to convert before DC1. A randomly selected photon

was required to convert in one of three places based on the number of radiation lengths:

the vacuum window, the air gap, or the upstream half of DC1. The probability of this

occurring naturally is given in Table 6.2. The efficiency gained by forcing conversions

is the inverse of the probability. In Chapter 4, it was claimed that the quantity of air in
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Table 6.10: Monte Carlo acceptance for KL → π0π0π0
D events reconstructed as signal

and as normalization events.

Dataset εin 1D MC
2D εin 1D MC

DD

Win97 (3.64 ± 0.39) × 10−8 (8.88 ± 1.94) × 10−9

Sum97 (6.41 ± 0.64) × 10−8 (1.23 ± 0.28) × 10−8

99 (8.38 ± 0.36) × 10−8 (1.73 ± 0.16) × 10−8

Helium bag 1A changed with time during the 97 run. The uncertainty on the number of

radiation lengths was quoted as 5%. This uncertainty feeds directly into the background

prediction and will later be assigned to a systematic error in the branching ratio.

The acceptance numbers for single Dalitz events reconstructed as both signal and

normalization are summarized in Table 6.10. The probability associated with forcing

the conversions has been included in the acceptance factor and should not be included

in the single Dalitz branching ratio in the background estimate.

Other backgrounds that were considered include KL → π0π0π0 events with two

external conversions and π0 → e+e−e+e−γ events with x4e < 0.9. Both of these sources

have negligible contributions after all cuts.

6.4 The Double Ratio

The number of candidate events found in the data is given is Table 6.11. These

numbers do include a residual background that is predicted to be less than 1%. The

modified formula for the double ratio, including background sources, is

R =
(rε2D

2D − εDD
2D ) + 1

ρ(rε2D
1D − εDD

1D )

εDD
DD − rε2D

DD

, (6.5)

where r is the ratio in observed signal to normalization events and ρ = Γeeγ/Γγγ =

0.01213 is the PDG value of the single Dalitz branching ratio.

The calculated values of the double ratio are given in Table 6.12 along with the

statistical errors and the combined result. The χ2/dof on the average is 1.6.
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Table 6.11: Number of candidate events found in the data after all cuts.

Dataset KL → π0π0
Dπ0

D KL → π0π0π0
DD

Win97 26011 5429
Sum97 19879 4152

99 95361 20930

Total 141251 30511

Table 6.12: Double ratio R and statistical error for each dataset and the combined
result, which has a χ2/dof = 1.6.

Dataset R

Win97 0.2263 ± 0.0034
Sum97 0.2289 ± 0.0039

99 0.2231 ± 0.0017

Combined 0.2244 ± 0.0014
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Table 6.13: Estimate of residual background levels and final event samples.

Win97 Sum97 99
DD 2D DD 2D DD 2D

Signal 5397 25904 4123 19771 20795 94828
XO 23 71 20 59 94 332
1C 9 36 9 49 41 201

With the ratio R in hand, the predicted number of background events from each

source can be calculated and subtracted from the number of candidate events. Table 6.13

presents the background estimates along with the number of background-subtracted

signal and normalization events.

The combined number of background-subtracted events is 30, 315 for the signal

and 140, 503 for the normalization. The estimated background contamination after all

cuts is less than 1% as claimed.

6.4.1 Comparisons between Data and Monte Carlo

This section presents a study of the double ratio R as a function of the different

cut quantities. Each plot is the double ratio of the ratio of data to MC in the signal

mode to the ratio of data to MC in the normalization mode in some variable. In all

cases, the cut on the variable under study has been removed. The location of the cut is

indicated.

The double ratio as a function of each of the cluster variables is shown in Fig-

ures 6.19, 6.20, and 6.21. The bin-to-bin agreement is indicated by the χ2 of the fit to

a constant. The ratio is very flat in both the minimum cluster energy and the total

energy. The minimum cluster separation however shows a possible trend under 7 cm.

Disagreements of this type will be systematically treated later in this chapter.

The tracking variables are shown in Figures 6.22, 6.23, and 6.24. The agreement

in the E/p distributions is remarkable considering the disagreement previously shown
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Figure 6.19: Double ratio as a function of the minimum cluster energy.

Figure 6.20: Double ratio as a function of the total energy.

for the normalization mode.

Figures 6.25, 6.26, and 6.27 display the double ratio as a function of the vertex

χ2, the magnet χ2, and the z-vertex. The Monte Carlo apparently does the same poor

job of predicting the χ2 shapes in both modes. There is no indication of biases in the
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Figure 6.21: Double ratio as a function of the minimum cluster separation.

Figure 6.22: Double ratio as a function of the minimum track momentum.

position of the z-vertex.

Next, the kinematic variables are discussed. The ratios are shown in Figures 6.28,

6.29, and 6.30. While both of the kaon parameters are entirely flat, there is an indication

of a downward slope in the ratio in terms of the pairing χ2. This will be studied further



109

Figure 6.23: Double ratio as a function of the minimum E/p.

Figure 6.24: Double ratio as a function of the maximum E/p.

later in the discussion of systematic errors.

The final selection requirement is the background eliminating track separation

cut. The double ratio as a function of this quantity is shown in Figure 6.31. The

average is dominated by the first bin. While there is some fluctuation in the region of
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Figure 6.25: Double ratio as a function of the vertex χ2.

Figure 6.26: Double ratio as a function of the magnet χ2.

the cut, there is no indication of a bias. The next section describes the many systematic

studies performed, including a study of the dependence of the double ratio on the chosen

values of the selection cuts.
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Figure 6.27: Double ratio as a function of the vertex z-position.

Figure 6.28: Double ratio as a function of the total mass.

6.5 Systematic Studies

The systematic studies have been divided into three categories: theory, simula-

tion, and analysis. Sources of theoretical errors include uncertainties on the parameters

of the tree-level matrix element as well as neglected higher order contributions at the
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Figure 6.29: Double ratio as a function of the transverse momentum squared.

Figure 6.30: Double ratio as a function of the pairing χ2.

2–loop level. Simulation errors are associated with details of the detector simulation

such as the amount of material. Analysis uncertainties are meant to cover errors result-

ing from a particular choice of selection cuts. Each of these areas is explained in detail

below.
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Figure 6.31: Double ratio as a function of the minimum track separation.

6.5.1 Theoretical Uncertainties

The Monte Carlo generates events based on the QED matrix elements described

in Chapter 2. The signal mode requires three parameters be specified while the normal-

ization mode depends on only one of those three. Additionally, the equations governing

the processes are only known to first order. Higher order contributions, like 2–loop

diagrams and radiation of multiple photons, are neglected. While the branching ratio

measurement is not overly sensitive to these effects, an estimate of their possible size is

desirable.

6.5.1.1 Matrix Element Parameters

The three parameters of the π0γ∗γ∗ coupling are not precisely known. The next

chapter will describe a measurement of them from the π0 → e+e−e+e− data. The

true branching ratio depends weakly on their exact values and the signal acceptance

is modified only slightly when the parameters are varied within reason. Increasing the

scalar component in the Monte Carlo events had negligible impact on the acceptance, as
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did varying the form factor slope parameter within the measured errors. The systematic

error is limited to less than 0.01%.

6.5.1.2 Radiative Corrections

The impact of higher order corrections is estimated simply by taking the difference

between tree-level and first-order acceptances and squaring. The rationale for this

is that higher order terms are suppressed by factors of αEM and are unlikely to be

significant. The change in the acceptance between lowest-order and first-order is roughly

2%, resulting in an uncertainty due to second-order effects of approximately 0.04%.

6.5.2 Simulation Uncertainties

The Monte Carlo simulates both the response of the decay particles to the detector

material and the response of the detector to the particles. Neither of these simulations

is perfect and in order to gauge the dependence of the result on the assumptions made

I vary different aspects of the MC and record the change in the acceptance. For a full

description of the techniques used in this section see Reference [29].

6.5.2.1 Material Estimates

The Monte Carlo acceptance depends on the amount of material simulated within

the detector. As discussed previously, the number of radiation lengths for most elements

is precisely known, however helium bag 1A is only known to about 5%. The composition

of the bag in the simulation was varied from all air to all helium. The ratio of acceptances

changes by 3% over the full range. The uncertainty on the ratio is then 5% of the overall

change, or 0.15%.
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6.5.2.2 Chamber Resolution

The chamber resolution enters into the reconstruction at vertexing through the

χ2 distributions. The average resolution can be inferred from the central portion of the

SOD distributions. To study the effect of mis-modeling the resolution, the MC hits were

smeared in the analysis in such a way as to make the SOD distributions 10% wider.

The ratio of acceptances changes by 0.84%.

6.5.2.3 Chamber Inefficiencies

The tracking efficiency can bias any comparison of modes with different numbers

of tracks or even different illuminations. The illuminations between signal and normal-

ization are nearly identical. The inefficiencies are modeled in the Monte Carlo with a

DCMAP, as discussed previously. To account for possible differences between the two

modes, MC events are reweighted based on track position. The event receives a weight

based on the likelihood that all four tracks would have been reconstructed given a higher

DCMAP weight. Based on studies of chamber illuminations, a 20% variation in the

maps is unlikely but possible. At this level, the ratio of acceptances changes by only

0.04%.

6.5.2.4 Calorimeter Resolution

The cluster energy resolution determines the width of the E/p and Mγγ distri-

butions, among other things. To study the impact of mis-modeling this resolution in

the MC, clusters in MC events are smeared in such a way as to make the E/p distribu-

tion 1% wider. The amount of smearing was chosen by looking at the variation in the

E/p width from run to run. With this amount of degradation, the ratio of acceptances

changes by just 0.02%.
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6.5.3 Analysis Uncertainties

The final category of systematic effects is intended to cover biases introduced by

particular choices of the selection procedure and cuts.

6.5.3.1 Variation of Cuts

Each cut was varied within reason while all other cuts were held fixed. Significant

changes in the ratio R are defined as variations of more than one uncorrelated, statistical

error. In the case in which the change is significant, the excess is taken as a bias. The

total error is then the sum in quadrature of the individual biases. The bias due to cut

variation is roughly 0.80% in Win97, dominated by loosening the E/p cut. In Sum97,

the bias is 1.49%, due entirely to the minimum cluster separation cut. All of the biases

are small in the 99 dataset and the total is just 0.19%. The weighted average of the

uncertainties in the three datasets is 0.21%.

6.5.3.2 Monte Carlo Statistics

The calculation of the signal and normalization acceptances was based on Monte

Carlo samples equal to roughly five times the data. The total number of reconstructed

signal Monte Carlo events is 184865, while the number of normalization events is 826457.

The combined error is then 0.26%.

6.5.3.3 Background Estimates

The background estimates suffer from some imprecision because the background

contamination is small. If the background acceptances are allowed to individually fluc-

tuate by a factor of two, the ratio R is remains stable at the 0.15% level.
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Table 6.14: Summary of systematic uncertainties in the ratio R.

Category Source Error (%)

Theory δrad 0.04
M(α, ζ, δ) 0.01

Simulation DC Res 0.84
Material 0.15
DC Ineff 0.04
CsI Res 0.02

Analysis MC Stat 0.26
Cut Var 0.21
Backgrounds 0.15

Total Uncertainty 0.93

6.5.4 Combined Systematic Uncertainty

A summary of systematic effects is shown in Table 6.14. The combined error is

obtained by adding the individual uncertainties in quadrature.

There is one additional source of error in any measurement which relies on the

measured value of the single Dalitz branching ratio, which is known to only 2.72%.

The π0 → e+e−e+e− branching ratio is obtained from the double ratio by multiply

by two factors of the π0 → e+e−γ branching ratio, resulting in an external systematic

uncertainty of 5.44% and a combined error of 5.64%.

6.6 Branching Ratio Result

The final result for the ratio R, with both the statistical error and an estimate of

the systematic error, is

R =
B(π0 → e+e−e+e−, x4e > 0.9) · B(π0 → γγ)

B2(π0 → e+e−γ)

= 0.2244 ± 0.0014 (stat) ± 0.0021 (syst) (6.6)

The combined uncertainty on this quantity is 1.12%. The branching ratio is quoted in

two ways, using the known branching ratios of B(π0 → γγ) = (0.98798 ± 0.00032) and
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B(π0 → e+e−γ) = (0.01198 ± 0.00032). The uncertainty in the π0 → γγ branching

ratio is negligible compared to other errors, especially the single Dalitz error.

The ratio of the double Dalitz rate to the single Dalitz rate squared is

B(π0 → e+e−e+e−, x4e > 0.9)

B2(π0 → e+e−γ)
= 0.2271 ± 0.0014 (stat) ± 0.0021 (syst) (6.7)

The form of the branching ratio that has been published before is relative to the two-

photon decay. This ratio is found to be

B(π0 → e+e−e+e−, x4e > 0.9)

B(π0 → γγ)
= (3.299±0.021 (stat)±0.030 (syst)±0.179 (ext))×10−5

(6.8)

where the last error is due to the 2.72% uncertainty in the single Dalitz branching ratio.

The combined error changes from 1.12% to 5.55%, due to the uncontrollable external

uncertainty.

The branching ratio for x4e > 0.9 is predicted to be 94.202% of the total rate for

all values of x4e. Making this theoretical extrapolation, I find

B(π0 → e+e−e+e−(γ))

B(π0 → γγ)
= (3.502 ± 0.194) × 10−5. (6.9)

6.6.1 Comparison to Previous Results

The result agrees well with the previous Samios result of (3.18 ± 0.30) × 10−5.

The difference between the two results is 0.28 ± 0.36. While the statistical uncertainty

has improved by a factor of roughly 12, the overall error, including the single Dalitz

branching ratio, is only better by a factor of 1.6.

The new analysis is also in good agreement with the preliminary KTeV results.

The 97 number changed from 3.31× 10−5 to 3.34× 10−5, while in 99 the result changed

from 3.27× 10−5 to 3.28× 10−5. The main difference between the result presented here

and the preliminary KTeV result is in the definitions of the acceptances for both the

signal and normalization modes. This is not a true change but rather a new definition

of the observed branching ratio.
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Finally, the result is in good agreement with the theoretical prediction, including

radiative corrections. For x4e > 0.9, the predicted branching ratio is 3.331×10−5 , while

for all x4e it is 3.536 × 10−5.



Chapter 7

The π0γ∗γ∗ Coupling

It was shown in Chapter 2 that the π0 → e+e−e+e− final state can be used as a

probe of the π0γ∗γ∗ vertex. The coupling derived there has the form

Cµνρσ ∝ g̃f(x1, x2;α)[cos ζεµνρσ + sin ζeiδ(gµρgνσ − gµσgνρ)], (7.1)

where α parameterizes the momentum dependence and ζ and δ describe the relative

strength and phases of the two allowed couplings. The mixing angle ζ takes values

between 0 and π/2, while the phase difference δ lies between 0 and π. The point

ζ = 0 describes a purely CP–conserving interaction (assuming the π0 is a pseudoscalar),

while ζ = π/2 would describe a pure CP–violating decay. In either case δ, the phase

difference, is unobservable since there is no mixing. For intermediate values of ζ, the

phase difference becomes a measure of CPT conservation. If CPT is conserved then the

phase difference, in the absence of absorptive decay amplitudes, should be zero (or π).

For π0 decays, any absorptive process would occur at higher order in αEM , therefore a

large value of δ would be a clear indication of new physics.

This chapter will describe how the three parameters of the coupling may be

extracted from the data. The method of likelihood maximization is well suited for

multi-dimensional problems such as this one. I will discuss the general properties of

likelihood functions before deriving the form specific to the π0γ∗γ∗ coupling. This will

be followed by a summary of Monte Carlo studies in which independent sets of MC



121

events, generated with known values of the parameters, were fit in order to identify any

biases intrinsic to the method. One bias, due to the resolution on the angle between

the two e+e− pairs, was discovered and a correction has been calculated. The rest of

the chapter will cover the measurement from the KTeV dataset along with a summary

of systematic studies.

7.1 Likelihood Estimation

The likelihood function is usually described as the joint p.d.f. of a given set of

data [13]. In almost all cases, it is the logarithm of the likelihood function that one

works with. I will therefore define the likelihood function to be

L(µ) = − ln
N
∏

i

f(xi;µ), (7.2)

where f(xi;µ) is a p.d.f. describing the probability of measuring xi given the parameters

µ and the sum runs over the observed data. I have inserted a minus sign simply because

I prefer to minimize, rather than maximize, the function. The point in the parameter

space at which the likelihood function takes its minimum value is then the most likely

value of µ given the observed xi. The logarithm is convenient since it turns the product

into a sum,

L(µ) = −
N
∑

i

ln f(xi;µ). (7.3)

The most likely value of µ is calculated by finding the minimum in each parameter,

∂L(µ)

∂µi
= 0, (7.4)

and the uncertainties on the estimate are found by calculating the inverse of the covari-

ance matrix, which is approximated by

(

V −1
)

ij
= − ∂2L

∂µi∂µj
, (7.5)

evaluated at the minimal point. A more general method of estimating errors is to

consider changes in the likelihood function. Assuming that the true value is known,
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Table 7.1: Change in likelihood function corresponding to 1, 2, and 3σ significance for
1, 2, or 3 free parameters.

Npar 1 2 3

1σ 0.50 1.15 1.77
2σ 2.00 3.09 4.02
3σ 4.50 5.92 7.08

the difference in the likelihood function evaluated at its minimum and at the true value

should be less than 1/2 approximately 68% of the time and less than 2 about 95% of

the time. Table 7.1 gives the significance of changes in the likelihood function for 1, 2,

or 3 free parameters in terms of standard deviations [13].

As a simple, analytic example consider a Gaussian distributed p.d.f. in one di-

mension,

f(x;µ, σ2) =
1√

2πσ2
e−(x−µ)2/2σ2

. (7.6)

The likelihood function for a set of observed xi is

L(µ, σ2) =

N
∑

i

[

ln
√

2πσ2 +
(xi − µ)2

2σ2

]

,

=
N

2
ln(2π) +

N

2
ln σ2 +

1

2σ2

N
∑

i

(xi − µ)2. (7.7)

The minimum of the likelihood in µ is given by

∂L

∂µ
= − 1

σ2

N
∑

i

(xi − µ) = 0. (7.8)

This of course is satisfied when

µ =
1

N

N
∑

i

xi. (7.9)

The equivalent condition on σ2 is

∂L

∂σ2
=

N

2σ2
− 1

2σ4

N
∑

i

(xi − µ)2 = 0, (7.10)

which is satisfied if

σ2 =
1

N

N
∑

i

(xi − µ)2. (7.11)
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Most statistics textbooks point out that the estimate for σ2 is a biased estimator and

should involve a factor of 1/(N − 1) rather than 1/N . Of course when N is large these

two terms are equivalent. The covariance matrix for the Gaussian p.d.f. can be shown

to be

V = −







σ2/N 0

0 2σ4/N






. (7.12)

The absence of off-diagonal elements indicates that the two parameters are uncorrelated.

The simple Gaussian example has exposed three important issues. First, the

value of the likelihood function at its minimum is arbitrary and depends on the size of

the dataset among other things. In contrast, the minimum value of a χ2 function tells

you not only the most likely set of parameters but also how well the model actually

describes the data. In any fit, it is essential to measure the goodness-of-fit since the

estimate of the parameters is meaningless if the model is just wrong. In the likelihood

method, it is possible to estimate the goodness-of-fit by comparing the minimum value

of the likelihood function for the data to the distribution of minimum values from

many, identically sized, Monte Carlo samples. The second point is that the likelihood

function must be properly normalized. Leaving out the 1/
√

σ2 normalization factor in

the example would have lead to a wrong conclusion. However, the factor of
√

2π in the

normalization does not affect the position of the minimum. This leads to point three:

additive factors which are independent of the parameters can be ignored. With that

said, we will now turn to the likelihood function appropriate for the π0γ∗γ∗ coupling.

7.2 Likelihood Function for the π0γ∗γ∗ Coupling

Unlike the simple example discussed above, the likelihood function for the cou-

pling cannot be tackled analytically. Instead the function will be evaluated at select

points on a 3–dimensional grid. Before writing down the likelihood function it will

be convenient to make a change of variables from the bounded angles ζ and δ to the
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unbounded, real variables κ and η, defined as

κ = tan ζ cos δ, (7.13a)

η = tan ζ sin δ, (7.13b)

The inverse transformation is

ζ = tan−1
√

κ2 + η2, (7.14a)

δ = tan−1 (η/κ). (7.14b)

The relationship between the two sets of variables in the κ–η plane is shown in Figure 7.1.

δ

κ

η

tanζ

Figure 7.1: κ–η Plane.

In general, the uncertainties on the original set of parameters µ are related to the

uncertainties on the transformed set µ′(µ) by

Uij =
∑

k,l

∂µ′
i

∂µk

∂µ′
j

∂µl
Vkl, (7.15)

where V is the covariance matrix for µ′ and U is the equivalent quantity in terms of µ.
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The derivatives are to be evaluated at the minimum point. The derivatives are

∂κ

∂ζ
= sec2 ζ cos δ,

∂η

∂ζ
= sec2 ζ sin δ, (7.16a)

∂κ

∂δ
= − tan ζ sin δ,

∂η

∂δ
= tan ζ cos δ. (7.16b)

It will be shown later that the variables κ and η are uncorrelated and the following

relationships can be used instead,

σζ =
sin 2ζ

2ζ

√

cos4 δ σ2
κ + sin4 δ σ2

η, (7.17a)

σδ =
sin 2δ

2δ

√

σ2
κ + σ2

η . (7.17b)

In terms of α, κ, and η the coupling is

Cµνρσ =
g̃f(x1, x2;α)
√

1 + κ2 + η2
[εµνρσ + (κ + iη)(gµρgνσ − gµσgνρ)], (7.18)

where f(x1, x2;α) is the DIP form factor of Equation (2.11). In principle, κ and η can

take on any value, however the tree–level matrix element is symmetric in η (the sign of

sin δ is irrelevant) so only positive values of η will be considered.

The p.d.f. which describes the probability of measuring the data xi given the

parameters µ is

f(xi,µ) =
dΓ(xi,µ)/dxi

Γobs(µ)
, (7.19)

where dΓ(x,µ)/dx is the differential partial width evaluated at x and µ, and Γobs(µ) is

the observed partial width, which serves as a normalization factor. The normalization

term is just the integral of the numerator and basically accounts for the dependence of

the acceptance on the parameters µ.

This normalization can be calculated with weighted Monte Carlo events by noting

that the true decay rate is approximated by

Γtrue(µ) =
1

Ngen

Ngen
∑

i

dΓ(xi,µ)/dxi, (7.20)
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and that the acceptance for observing weighted events is

ε(µ) =

∑Nobs

i dΓ(xi,µ)/dxi
∑Ngen

j dΓ(xj ,µ)/dxj

. (7.21)

The observed rate is then given by

Γobs(µ) =
1

Ngen

Nobs
∑

i

dΓ(xi,µ)/dxi. (7.22)

In order to calculate the normalization factor at every trial value of µ, I can simply

re–weight the MC events. To do so, I calculate the amplitude for the decay at the

generated value µgen and for other values of µ. The differential rate for a given µ can

then be written as

dΓ(xi,µ) =
A(xi,µ)

A(xi,µgen)
W (xi,µgen), (7.23)

where W is the event weight (W (x,µ) = dΓ(x,µ)/dx), and A(x,µ) is the square of

the matrix element. The normalization factor now becomes

Γobs(µ) =
1

Ngen

Nobs
∑

i

A(xi,µ)

A(xi,µgen)
W (xi,µgen). (7.24)

The likelihood function, after removing additive constant terms can be expressed as

L(µ) = −
Ndata
∑

i

ln
A(xi,µ)

1
Ngen

∑NMC

j
A(xj ,µ)

A(xj ,µgen)W (xj,µgen)
, (7.25)

where the sum over j is over the number of observed events in the MC and the sum

over i is over the number of observed events in the data sample.

In order to apply this procedure to the π0 → e+e−e+e−(γ) data sample, I have

to have a way of accounting for both non–radiative and radiative events in a consistent

manner. The normalization factor must be modified to include contributions from both

processes, with the acceptance appropriate for each. The combined observed rate is just

Γobs(µ) =
1

N4e
gen

N4e
∑

i

A4e(xi,µ)

A4e(xi,µgen)
W4e(xi,µgen)

+
1

N4eγ
gen

N4eγ
∑

i

A4eγ(yi,µ)

A4eγ(yi,µgen)
W4eγ(yi,µgen), (7.26)
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where y is the 8–dimensional phase space of the radiative decays. The event weight for

π0 → 4e events includes radiative corrections, which I will assume are independent of

µ. In performing this calculation, I simply look to see if the MC event in question was

generated as a π0 → 4e or a π0 → 4eγ.

The numerator of the likelihood function is calculated using the π0 → 4e ampli-

tude, but with a large photon energy cutoff appropriate to the detector photon sensi-

tivity. The final form of the likelihood function becomes

L(µ) = −
Ndata
∑

i

ln
AEcut

4e (xi,µ)

Γobs(µ)
. (7.27)

The value of the cutoff is chosen to correspond to a value of x4e = 0.9, or E∗
γ = 6.8MeV.

7.3 MC Studies

The method described above can be tested on an independent MC sample with

a known value of µ. There are at least three reasons to test the fitting algorithm on

Monte Carlo data. First, the MC is generated with known values of the parameters

and can therefore be used to check for any biases in the method. Second, the minimum

value of the likelihood function for a fixed number of events is itself a random variable

and can be used as a judge of goodness-of-fit. The last reason is to study the statistical

error on the extracted value of the parameters. This section will discuss all of these

issues in the context of a study using five times the amount of data.

The likelihood function from one set of MC data can be sliced and plotted in

either one or two of the three dimensions. Figures 7.2, 7.3, and 7.4 show the three

2–dimensional slices as contour plots. The first plot has values of α on the horizontal

axis and κ on the vertical. The three contours mark the 1, 2, and 3σ levels appropriate

for two free parameters. The crossing of the two straight lines indicates the generated

point. The other two plots show the likelihood function in α–η and in κ–η, respectively.

There are two effects that can immediately be seen in the 2–D likelihood functions.
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Figure 7.2: Likelihood function in two variables at the minimum of the third variable,
using a Monte Carlo sample equivalent to one dataset. The two free variables are α–κ.
The contours indicate the 1, 2, and 3σ levels appropriate for two free parameters. The
generated point (0,0) is given by the crossing of the two lines.

Figure 7.3: Likelihood function in two variables at the minimum of the third variable,
using a Monte Carlo sample equivalent to one dataset. The two free variables are α–η.
The contours indicate the 1, 2, and 3σ levels appropriate for two free parameters. The
generated point (0,0) is given by the crossing of the two lines.
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Figure 7.4: Likelihood function in two variables at the minimum of the third variable,
using a Monte Carlo sample equivalent to one dataset. The two free variables are κ–η.
The contours indicate the 1, 2, and 3σ levels appropriate for two free parameters. The
generated point (0,0) is given by the crossing of the two lines.

First, the parameters are appear uncorrelated. A correlation would be indicated by a

tilt to the major axis of the error ellipses. The absence of such a tilt in all three slices

implies that there are no correlations between the measured quantities. The second

thing to notice is that the generated value of the α–κ pair falls within the 1σ contour

while the generated value of the κ–η pair does not. This bias is in the η direction and

is more obvious in the 1–D slices shown in Figures 7.5, 7.6, and 7.7. These plots show

slices of the likelihood function in α, κ, and η, respectively, with the other two variables

fixed at their minimum values. The significance of the bias is indicated by the change

in the likelihood function between its minimum and the value at the generated point.

As shown in the 1-D slice, the change is approximately 2.5 which is more than 2σ. This

bias in η is attributed to the finite resolution on the angle φ between the two Dalitz

pairs. This resolution bias is the topic of the next section.
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Figure 7.5: Likelihood function in one variable at the minimum of the other two vari-
ables, using a Monte Carlo sample equivalent to one dataset. The free variable is α and
the generated point is α = 0.

Figure 7.6: Likelihood function in one variable at the minimum of the other two vari-
ables, using a Monte Carlo sample equivalent to one dataset. The free variable is κ and
the generated point is κ = 0.

7.3.1 Measurement Bias

The bias on η is created by the finite resolution on the angle φ. The differential

width with respect to φ has the following form

dΓ

dφ
∼ 1 − A cos 2φ + B sin 2φ, (7.28)
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Figure 7.7: Likelihood function in one variable at the minimum of the other two vari-
ables, using a Monte Carlo sample equivalent to one dataset. The free variable is η and
the generated point is η = 0.

where

A ∼ −0.2 cos 2ζ, (7.29a)

B ∼ +0.2 sin 2ζ cos δ. (7.29b)

The value of the κ–η pair extracted from the MC samples is consistent with κ = 0 and

η 6= 0, or δ = π/2 and ζ = tan−1 η. For small η this point is described by

A ∼ −0.2(1 − 2η2), (7.30a)

B ∼ 0. (7.30b)

That is, the extracted point is consistent with a cos 2φ term but with a reduced am-

plitude, which is exactly what one would expect from a random Gaussian smearing of

such an oscillation. In other words, the resolution reduces the observed amplitude A

and the fitter compensates by increasing η.

To remove this bias I will map out the function that relates the true value of η to

the resolution–biased value extracted from the fit. In order to do this I have fit several
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MC samples generated with different values of η. The extracted values, as a function of

the generated values, are shown in Figure 7.8.

Figure 7.8: Map of extracted versus generated values of η.

The points are well described by the function

ηout = ηin + b

(

e−mηin − e−m

1 − e−m

)

, (7.31)

with b = 0.12 and m = 7.0. While this function can not be inverted analytically, it is

well behaved and can be inverted numerically quite easily. After the total uncertainty

on the raw value of η has been computed I will transform the central value and error

accordingly.

7.3.2 Goodness-of-Fit

The actual minimum value of the five likelihood values should be distributed

according to a χ2 distribution. As a test of goodness-of-fit, I can compare the minimum

value of the data likelihood function to the distribution from the MC. The quantity

that I use is the minimum value of the likelihood function per number of events fit. The

values for the five MC samples are shown in Table 7.2.
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Table 7.2: Values of minimum likelihood per number of events for the five MC samples.

MC Set Win97 Sum97 99

0 −2.724 −2.757 −2.757
1 −2.723 −2.733 −2.708
2 −2.735 −2.732 −2.710
3 −2.729 −2.737 −2.703
4 −2.729 −2.726 −2.703

If the minimum value of the likelihood function from the data, divided by the

number of data events, falls significantly outside of the range indicated in the table, it

may be that the model is a poor description of the data for any choice of parameters.

As will be shown in the next section, this is not the case and the model describes the

data very nicely.

7.4 Extracted Values

The fit to the data was done using the same cuts described in the previous chapter

for selecting π0 → e+e−e+e− events. As discussed above, the value of the likelihood

function at its minimum is a test of the agreement between the data and the model.

The values of the minimum for the three datasets are shown in Table 7.3 and they agree

quite nicely with the values from the MC, shown in Table 7.2. As an additional check

on the goodness-of-fit, I can compare the distributions of the two main phase space

variables between the data and the MC, shown in Figure 7.9. It is seen that the MC

does a very adequate job of predicting the shape of these important quantities.

The slices of the likelihood function derived from the combined dataset are shown

Table 7.3: The number of events used in the fit along with the value of the likelihood
function at its minimum divided by the number of events.

Win97 Sum97 99

Events 5428 4152 20928
Minimum −2.727 −2.731 −2.713
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χ2/dof = 16.1 / 16 χ2/dof = 25.7 / 19

Figure 7.9: Comparison of the distributions of xb and φ between the data (points) and
5 MC samples (black histogram). The ratios are data over MC.

in Figures 7.10 to 7.15. The general features are very similar to those seen in the MC

distributions earlier. The apparent secondary minimum in the α–η plane has been

studied and found to be an artifact of the plotting software.

Figure 7.10: Likelihood function in two variables at the minimum of the third variable,
using the complete KTeV dataset. The two free variables are α–κ. The contours indicate
the 1, 2, and 3σ levels appropriate for two free parameters.

Table 7.4 gives the raw values along with statistical errors for the three datasets
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Figure 7.11: Likelihood function in two variables at the minimum of the third variable,
using the complete KTeV dataset. The two free variables are α–η. The contours indicate
the 1, 2, and 3σ levels appropriate for two free parameters.

Figure 7.12: Likelihood function in two variables at the minimum of the third variable,
using the complete KTeV dataset. The two free variables are κ–η. The contours indicate
the 1, 2, and 3σ levels appropriate for two free parameters.

and the weighted average. The different datasets are statistically consistent. The small

χ2 in the η average indicates that the resolution bias is a bigger effect than statistical
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Figure 7.13: Likelihood function in one variable at the minimum of the other two
variables, using the complete KTeV dataset. The free variable is α.

Figure 7.14: Likelihood function in one variable at the minimum of the other two
variables, using the complete KTeV dataset. The free variable is κ.

fluctuations.

The next section will discuss the various systematic studies performed to access

additional sources of uncertainty.
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Figure 7.15: Likelihood function in one variable at the minimum of the other two
variables, using the complete KTeV dataset. The free variable is η.

7.5 Systematic Studies

Many of the systematics are identical to those discussed in the previous chapter

about the branching ratio. There are two unique studies discussed below, one dealing

with the normalization calculation and the other dealing with the bias mentioned above.

7.5.1 Normalization

The precision of the normalization calculation increases roughly as the square

root of the number of MC events used in the calculation. The main analysis uses the

equivalent of five datasets to estimate the observed partial width. In order to estimate

the uncertainty in this calculation, I perform the fit five times, each time using only

one of the five datasets in the normalization. I then take the largest difference between

the main result and any of the five fits, divided by
√

5, as the remaining uncertainty.

Table 7.5 summarizes the error on each parameter for each dataset. The combined error

on each parameter is the weighted average of the three datasets based on the number
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Table 7.4: Results of the coupling parameters. The values of η are uncorrected. The
errors are statistical.

Dataset α κ η

Win97 −0.2 ± 2.3 −0.020 ± 0.020 0.113 ± 0.073
Sum97 −1.8 ± 2.6 −0.034 ± 0.024 0.151 ± 0.063

99 +2.3 ± 1.2 −0.003 ± 0.011 0.135 ± 0.031

Combined +1.3 ± 1.0 −0.008 ± 0.009 0.135 ± 0.026
χ2/dof 1.2 1.4 0.1

of events in the data. In each case, this MC uncertainty is less than half the statistical

uncertainty.

7.5.2 Resolution Bias Correction

The bias on η due to the finite resolution on the angle φ is well understood. The

form of the correction function given above has the correct general form but is not

precisely known. To be conservative I will assign the total size of the correction as a

systematic uncertainty on η. Table 7.6 lists the systematic error in each of the three

run periods as well as the weighted average.

7.5.3 Cut Variation

General disagreements between the data and the Monte Carlo are assigned errors

based on how the fit parameters change as the various selection cuts are varied about

their nominal values. The method applied here is to change one cut to be either slightly

Table 7.5: Systematic uncertainties due to finite MC statistics in the normalization
calculation.

Dataset δα δκ δη

Win97 0.48 0.0052 0.0031
Sum97 0.55 0.0044 0.0110

99 0.22 0.0048 0.0057

Combined 0.31 0.0048 0.0060
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Table 7.6: Systematic error on η due to the resolution bias.

Dataset δη

Win97 0.113
Sum97 0.066

99 0.084

Combined 0.087

looser or slightly tighter than the nominal value and perform the fit. The new value

is then compared to the central value using only the uncorrelated part of the errors.

This is approximated by subtracting the two errors in quadrature. Any cut whose new

value differs from the central value by more than one uncorrelated standard deviation

is assigned a systematic uncertainty. The final error is then the sum in quadrature of

all individual cut uncertainties. Table 7.7 summarizes the results of varying the 13 cuts

described in the previous chapter.

This method is perhaps overly conservative since some double counting may occur

when different cuts are correlated. It is also possible that some of the observed changes

are actually statistical in nature and are not true systematic biases. In the end it is

hoped that this method covers systematic effects such as differences in resolution and

reconstruction efficiencies that are not addressed elsewhere and as such I err on the

conservative side.

7.5.4 Material

There are several effects that might directly impact the shape of the different

phase space distributions that feed into the fit. Among them the most important is

the impact on the reconstruction of the opening angle due to multiple scattering. The

uncertainty in the amount of multiple scattering is directly related to the uncertainty

in the amount of material in the detector. In order to study the impact on the results

of using the wrong amount of material in the Monte Carlo calculation of the normal-
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Table 7.7: Summary of cut variation errors on the extracted parameters

α κ η

Cut Win97 Sum97 99 Win97 Sum97 99 Win97 Sum97 99

1 0 0.442 0.109 0 0.0061 0.0064 0 0 0.0057
2 0 0 0 0.0001 0.0029 0 0 0 0
3 0 0.619 0 0 0 0.0026 0 0 0
4 0 0 0 0.0026 0.0083 0.0072 0 0 0
5 0 0.868 0 0 0.0056 0 0 0 0
6 0 0 0 0.0013 0 0 0 0 0
7 0 0 0.765 0 0.0128 0.0003 0 0 0
8 0 0.033 0.028 0.0015 0 0 0 0 0
9 0 0 0.026 0 0.0044 0.0014 0 0 0

10 0.748 0 0.081 0 0 0.0010 0 0 0
11 0.346 0.789 0 0 0.0025 0.0013 0 0 0
12 0 0 0.030 0.0008 0.0014 0.0019 0 0 0
13 0.084 0.231 0 0.0012 0 0 0 0 0

All 0.828 1.418 0.778 0.0036 0.0184 0.0104 0 0 0.0057

δ 0.874 0.0103 0.0057
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Table 7.8: Number of radiation lengths used to study systematic uncertainties on the
parameters.

Set Win97 Sum97 99

−7σ 0.00076 0.00082 0.00046
Nominal 0.00104 0.00110 0.00138

+7σ 0.00132 0.00138 0.00102

ization factor, I have generated two additional sets of MC events which are identical to

the nominal set except for the amount of material in Helium bag 1A. The amount of air

in this bag has been discussed previously in connection to the branching ratio measure-

ment. For this study I have varied the amount of material by 7 standard deviations in

both directions. Table 7.8 shows the number of radiation lengths used in the study.

The normalization was recalculated with the modified material and then used

to fit the data. The impact is generally small even at ±7σ. To estimate a realistic

uncertainty I measure the trend and then scale back to ±1σ. The resulting uncertainties

are negligible compared to other sources of error and will not be considered further.

7.5.5 Chamber Inefficiency

The second effect that could directly impact the reconstruction is tracking ineffi-

ciencies due to high SODs and missing hits. It is known that the tracking efficiency had

both a position and a time dependence due to radiation damage in the beam regions

of the drift chambers. This effect is modeled in the MC by applying 2-dimensional

efficiency maps measured from the data. The overall efficiency is found by comparing

chamber illuminations between the data and the MC. In order to estimate the effect

of this overall scale being wrong in the MC, I have generated MC events with either a

much higher or a much lower scale factor. Using KL → π0π0π0
D events, it was found

that scaling by roughly 40% in either direction created large discrepancies in the illumi-

nations. I therefore used MC events with scale factors of 0.60, 1.00, and 1.40 to calculate
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Table 7.9: Summary of Systematic Uncertainties.

Source α κ η

Norm 0.310 0.0048 0.0060
φ Bias 0.0870
Cuts 0.874 0.0103 0.0057

Total 0.927 0.0114 0.0874

the normalization factor. Even with these unrealistic values, no significant difference in

the extracted fit parameters was found.

7.5.6 Summary of Systematic Uncertainties

Other sources of systematic effects were studied and found to be insignificant.

These include effects like binning and fitting of the likelihood functions and changing

the physical photon energy cutoff used in the fit. Table 7.9 summarizes the important

systematic uncertainties on the fit parameters.

The total systematic uncertainties are similar to the statistical errors with the

exception of the correction to the η parameter.

7.6 Results

The combined results of the fit, correcting for the bias in η, are shown in Ta-

ble 7.10. The first error is statistical while the second is systematic. It should be

remembered that η is restricted to positive values and, since the result is consistent

with zero, an upper limit is the appropriate measurement to report.

Table 7.10: Combined results of the three fit parameters including statistical and sys-
tematic errors.

Parameter Value

α 1.3 ± 1.0 ± 0.9
κ −0.008 ± 0.009 ± 0.011
η 0.051 ± 0.026 ± 0.087
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Since η must be positive, the prescription of Feldman and Cousins [31] can be

used to set an upper limit at the 90% confidence level. This results in a the following

range

η < 0.20 at 90% C.L. (7.32)

Using the upper limit on η and the central value of κ = −0.008, the upper limit on ζ,

allowing for CPT violation, is estimated to be

ζ < 11.3◦ allowing CPT violation. (7.33)

To impose CPT conservation I use the 90% upper limit on |κ|, calculated with the same

prescription as the limit on η,

|κ| < 0.031 at 90% C.L. (7.34)

The corresponding limit on the mixing angle is

ζ < 1.72◦ requiring CPT conservation. (7.35)

The possibility of large phase differences cannot be excluded. At the upper limit

on η where the mixing is purely imaginary, the fraction of the CP violating to CP

conserving contributions could be as large as 20%. The same limit, but with the CPT

constraint, becomes 3.1%.



Chapter 8

Radiative Double Dalitz Branching Ratio

The radiative double Dalitz decay cannot be detected when the radiated photon

energy is less than about 2GeV in the lab frame. In the pion CM frame, a photon with

an energy of 5MeV and traveling in the same direction as the pion will be boosted to an

energy of just 2GeV in the lab frame. Photons with energies much below 5MeV in the

CM frame will never be detectable in the KTeV calorimeter. This detector threshold

imposes a cutoff in the observable branching ratio for any radiative decay. The cutoff

that will be used is defined in terms of x4e = M2
4e/M

2 which will be required to be less

than 0.9. In terms of energy, the photon energy must be greater than 6.75MeV in the

pion CM. The equation that relates these quantities is

E∗
γ =

M

2
(1 − x4e) . (8.1)

The maximum value of E∗
γ is 0.99995 × M/2.

The method of measuring the branching ratio is nearly identical to the method

already described for the non–radiative decay. The main difference is that the nor-

malization mode, in this case KL → π0π0π0
DD, is also the largest background. The

fundamental ratio in this analysis is

R =
Nobs

4eγ

Nobs
4e

ε4e

ε4eγ
=

B(π0 → e+e−e+e−γ, x4e < 0.9)

B(π0 → e+e−e+e−, x4e > 0.9)
. (8.2)

The π0 → e+e−e+e− numbers will simply be taken from the results of Chapter 6.
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The possible backgrounds to the π0 → e+e−e+e−γ signal include radiative double-

single Dalitz, single Dalitz with a conversion plus radiation, and double conversions

with radiation. The largest background comes from π0 → e+e−e+e− with radiation in

material or with an accidental photon. It is possible to separate the internal from the

external radiation because of differences in the angle at which the photon is produced at.

External radiation tends to be emitted at much smaller angles, relative to the electron,

than internal radiation does.

The first part of the chapter will highlight the aspects of the analysis that dif-

fer from the 4e8c reconstruction. I will then discuss the Monte Carlo predictions of

the background levels and the amount of external radiation. The rest of the chapter

describes the internal-external radiation separation and the branching ratio result.

8.1 Event Selection

The selection is identical to the π0 → e+e−e+e− branching ratio analysis except

that 9 clusters are required. The same cuts, listed in Table 6.3, are applied to the 4e9c

split sample. An event χ2 is formed to distinguish between the signal and radiative

double single-Dalitz events, which has the identical final state. After all of the π0 →

e+e−e+e− cuts have been applied, there remains 1129 events in the combined dataset.

8.1.1 External Radiation

Radiation downstream of the magnet is not detectable since the photon and elec-

tron almost always land on top of each other in the calorimeter. The key to this analysis

is therefore the ability to distinguish between internal and external radiation.

The probability of a 5GeV electron radiating a photon with energy greater than

2GeV is given approximately by (see Equation (4.6)), P (Eγ > 2GeV) ≈ 0.84X/X0,

where X/X0 is the amount of material in radiation lengths. This is remarkably similar

to the conversion probability for photons which goes like (7/9)X/X0 . The number of
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radiation lengths upstream of the magnet is roughly 0.007, making the probability of

radiation about 0.6%. The probability of 1 out of 4 electrons radiating is then 2.4%.

Given the 30000 π0 → e+e−e+e− events found in the 4e8c sample, one can predict that

roughly 700 π0 → e+e−e+e− events will be found in the 4e9c data due to hard external

radiation upstream of the magnet.

One additional cut is then necessary to distinguish between the signal mode which

has internal radiation and the normalization mode with external radiation. The most

effective variable to perform this separation is the smallest angle between the photon

and any of the electrons. The mean angle for internal radiation is 30mrad whereas the

typical angle for external radiation is only 3mrad. Figure 8.1 shows the distribution of

the logarithm of θmin. The green histogram contains Monte Carlo events with internal

radiation while the blue one is made from MC events with external radiation. The red

histogram is the sum of the two MC samples, which may be compared to the data.

While the χ2 between the data and the sum of the two Monte Carlo samples is fine at

23 for 25 degrees of freedom, there is an obvious disagreement in the region dominated

by external radiation. The interpretation of this difference in the spectrum will be

discussed below in the context of backgrounds.

In order to avoid the poorly understood region of θmin, a cut is made requiring

that log θmin > −1.2. Figure 8.2 shows the same distribution of θmin but with the cut

imposed. The number of events remaining in the data after this cut is 425. The Monte

Carlo acceptance for events with x4e < 0.9 is 5.85 × 10−4, while the acceptance for

events with x4e > 0.9 is only 8.07 × 10−6.

8.1.2 Backgrounds

The backgrounds that were studied included all of the same π0 → e+e−e+e− back-

grounds, double-single Dalitz and single and double conversions, plus π0 → e+e−e+e−

events with external radiation or accidental assistance. The single Dalitz and conver-
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χ2/dof = 23.0 / 25

Figure 8.1: Distribution of log θmin. The points with error bars are the data, the green
histogram is the internal radiation MC, the blue histogram is the external radiation
MC, and the red histogram is the sum of the MC.

sion backgrounds are found to be negligible. The external radiation, on the other hand,

dominates the sample of candidate π0 → e+e−e+e−γ events before the cut on θmin. Not

only that, but Figure 8.1 indicates that either the external radiation is mis-modeled or

there is another source of background in the data that is not simulated in the Monte

Carlo.

To evaluate the impact of the discrepancy in θmin on the predicted background

level, the amount of background is allowed to float in such a way as to minimize the

differences between the data and MC. The combination that fits the data best requires

that the external component of the MC be increased by 41%. Certainly this is above

and beyond any uncertainties in either the π0 → e+e−e+e− rate or the probability of

external radiation. It is more likely that the acceptance for external radiation is only
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χ2/dof = 6.7 / 10

Figure 8.2: Distribution of log θmin. The points with error bars are the data, the green
histogram is the internal radiation MC, the blue histogram is the external radiation
MC, and the red histogram is the sum of the MC.

trustworthy at the 40% level. This uncertainty in the background level translates into

an uncertainty in the branching ratio of 15%.

8.2 Branching Ratio

The number of observed events is assumed to depend on only two sources,

N4eγ = F · 3 · B(KL → π0π0π0) · B2(π0 → γγ) · [B4eγε4eγ + B4eε4e] , (8.3)

where B4eγ is defined for x4e < 0.9 and B4e is defined for x4e > 0.9. The flux is taken

from the π0 → e+e−e+e− analysis, where it was found to be 5.62×1011. The branching

ratio is therefore given by

B4eγ

B4e
=

1

ε4eγ

(

N4eγ

C
− ε4e

)

, (8.4)
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where C is the combination of the flux and the known branching ratios, C = 1.13×107.

Using the numbers quoted above, the branching ratio is found to be

B(π0 → e+e−e+e−γ, x4e < 0.9)

B(π0 → e+e−e+e−, x4e > 0.9)
= 0.0504 ± 0.0028(stat) ± 0.0076(syst), (8.5)

where the systematic error is from the background estimate discussed previously. The

predicted division of the data between internal and external radiation is 317 versus 108.

This mode has never been observed so there are no other measurements to com-

pare with. The predicted branching ratio is 0.0617. This is about 1.4σ higher than the

measured value. Given the current level of understanding this is completely acceptable.

The branching ratio with respect to the π0 → γγ decay can be found with the

aid of the measured π0 → e+e−e+e− branching ratio. It is found to be

B(π0 → e+e−e+e−γ, x4e < 0.9)

B(π0 → γγ)
= (1.68 ± 0.09(stat) ± 0.25(syst)) × 10−6. (8.6)



Chapter 9

Conclusions

The analysis of the combined KTeV dataset resulted in 30,511 π0 → e+e−e+e−

decays, nearly 150 times the 1962 experimental sample. These events were used to

extract several branching ratios:

B(π0 → e+e−e+e−, x4e > 0.9)

B2(π0 → e+e−γ)
= 0.2271 ± 0.0014(stat) ± 0.0021(syst), (9.1a)

B(π0 → e+e−e+e−, x4e > 0.9)

B(π0 → γγ)
= (3.299 ± 0.047(int) ± 0.179(ext)) × 10−5, (9.1b)

B(π0 → e+e−e+e−(γ)) = (3.46 ± 0.04(int) ± 0.19(ext)) × 10−5. (9.1c)

The last line gives the partial width of the double Dalitz decay, extrapolated to all

values of x4e. These results are in good agreement with the previous experimental

work of Samios [12] and our own theoretical predictions [15]. While the method does

introduce a large uncertainty due to the single Dalitz branching ratio, it is hoped that

KTeV will eventually measure this branching ratio. While the ultimate uncertainty will

be limited by systematic effects, it could likely as low as 1%. This would improve the

total error on this measurement by a factor of 3, reducing it to 1.7%.

The same events were used to extract the momentum dependence of the π0 form

factor. The parameter α is found to be

α = 1.3 ± 1.3. (9.2)

In terms of the standard slope parameter this is a = −0.040 ± 0.040. This is the first
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measurement of this quantity in the double Dalitz mode. While this result has the

opposite sign as the PDG average, it is still within 2σ.

Additionally, the size of any CP-violating contributions to the decay π0 → γ∗γ∗

has been limited. The most likely point in the κ− η plane corresponds to ζ = 3.0◦ and

δ = 99◦. These values imply large CPT and CP violation. However, since 1σ contour

covers the origin in κ− η, the phase difference δ cannot be limited at the 68% C.L.. If

CPT violation is allowed the 90% upper limit on the mixing angle is

ζ < 11.3◦ allowing CPT violation. (9.3)

If however, CPT conservation is enforced, the limit is reduced to

ζ < 1.72◦ requiring CPT conservation. (9.4)

Finally, the decay π0 → e+e−e+e−γ has been observed and a preliminary branch-

ing ratio has been calculated. The result, based on 317 background-subtracted events,

is

B(π0 → e+e−e+e−γ, x4e < 0.9)

B(π0 → γγ)
= (1.68 ± 0.27) × 10−6. (9.5)

The large error is due to uncertainties in estimating the contamination from the external

radiation background. At this level, the result is in good agreement with the theoret-

ical prediction and confirms the validity of the extrapolation used above to quote the

combined partial width.
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Appendix A

Phase Space Kinematics

This appendix explores the phase space parameterization for 2–body, 3–body, and

4–body final states. The invariant phase space differential element for a n–body decay

is defined as

dDΦn =

[

n
∏

i=1

1

(2π)3
d3ki

2Ei

]

(2π)4δ4(P −
n
∑

i=1

pi), (A.1)

where ki and Ei are the 3–momentum and energy of final state particle i and P is the

parent particle 4–momentum. The dimension of the phase space, D, is just three times

the number of final state particles minus four due to the momentum conserving delta

function, that is D = 3n − 4.

A.1 2–Body Phase Space

For a 2–body decay, Equation (A.1) takes the following form,

d2Φ2 =
1

(2π)2
d3k1

2E1

d3k2

2E2
δ4(P − p1 − p2). (A.2)

Before simplifying this expression, it will be helpful to work out some notation by

considering the decay of a meson of mass M into two massive photons. To simplify

matters, I will work in the CM frame and also will pick the +ẑ–direction to coincide
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with the direction of the first photon. In this frame, the three 4–momenta are

P ν = (M, 0, 0, 0), (A.3a)

pν
1 = (E1, 0, 0,+k), (A.3b)

pν
2 = (E2, 0, 0,−k). (A.3c)

The mass of each photon can be parameterized by the dimensionless quantity xi =

p2
i /P

2. It is then possible to solve for E1, E2, and k in terms of the quantities x1 and

x2,

E1 =
1

2
M(1 + x1 − x2), (A.4a)

E2 =
1

2
M(1 − x2 + x2), (A.4b)

k =
1

2
M
√

1 − 2(x1 + x2) + (x1 − x2)2. (A.4c)

If both photons are real (p2
i = 0) then we recover the familiar situation E1 = E2 = k =

M/2.

In order to generalize to larger final states it will be useful to define some general

quantities. Let pij = pi + pj , then

zij =
2(pi · pj)

p2
ij

= 1 − xi − xj, (A.5)

where xi = p2
i /p

2
ij and xj = p2

j/p
2
ij as above. I will also define

δij = xi − xj, (A.6a)

wij = 2
√

xixj, (A.6b)

λij =
√

z2
ij − w2

ij . (A.6c)

This last quantity can be shown to be proportional to the magnitude of the 3–momentum

of either photon in the meson rest frame. So the energies and momentum of the two
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photons in the CM frame can be simply expressed as

E1 =
1

2
M12(1 + δ12), (A.7a)

E2 =
1

2
M12(1 − δ12), (A.7b)

k =
1

2
M12λ12, (A.7c)

where M2
12 = p2

12.

Returning to the phase space element, the delta function can be easily integrated

over to yield

d2Φ2 =
1

25π2
λ12 d2Ω1, (A.8)

where Ω1 is the solid angle of particle 1. Note that λ12 here is a constant, related to the

masses of the final state photons. In the following sections one or both of the photons

will appear as a particle–anti-particle pair who’s combined mass is variable. Integrating

over the solid angle of photon 1 yields a constant phase space contribution of

Φ2 = S λ12

8π
, (A.9)

where the symmetry factor S is a half if the two particles are identical and one otherwise.

For two real photons λ12 = 1 and S = 1/2, so Φγγ = 1/(16π).

A.2 3–Body Phase Space

Now imagine that one of the massive photons converts into an electron–positron

pair. The number of phase space variables here is 5, three of which will be Euler angles

describing the orientation of the CM frame with respect to the lab frame. The remaining

two will be chosen to describe the mass of the virtual photon and the direction of the

real photon in the e+e− CM frame. If the positron, electron, photon, and pion momenta
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are p,q,k, and P , then

x =
(p + q)2

P 2
, (A.10a)

y =
2P · (p − q)

P 2(1 − x)
. (A.10b)

The allowed range of x is from 4m2/M2 to 1 and that of y runs from −(1 − x) to

+(1 − x).

The differential phase space element is

d5Φeeγ =
1

(2π)5
d3p

2Ep

d3q

2Eq

d3k

2Ek
δ4(P − p − q − k). (A.11)

After integrating over the uninteresting degrees of freedom, one is left with

d2Φeeγ =
M2

28π3
(1 − x) dx dy. (A.12)

A.3 4–Body Phase Space

The 4–body phase space has five dimensions (not counting the 3 Euler angles).

These are again defined in terms of 2–particle subsystems. The invariant masses of the

two pairs and the direction of one pair in the CM frame of the other make up the first

four variables. The last one is the angle between the normals of the two planes formed

by the pairs. The definitions of these quantities are

x12 = (p1 + p2)
2/P 2, (A.13a)

x34 = (p3 + p4)
2/P 2, (A.13b)

y12 =
2p34 · (p1 − p2) − P 2δ12z

P 2λ
, (A.13c)

y34 =
2p12 · (p3 − p4) − P 2δ34z

P 2λ
, (A.13d)

φ = arctan
16εµνρσpµ

1pν
2p

ρ
3p

σ
4

P 2λ[P 2zy12y34 − 2(p1 − p2) · (p3 − p4)]
, (A.13e)

where δij = (m2
i − m2

j)/(P
2xij), z = 1 − x12 − x34, w = 2

√
x12x34, and λ =

√
z2 − w2.

The two modes discussed in this thesis with a 4–body final state are π0 → e+e−γγ

and π0 → e+e−e+e−. In both cases the δ’s are zero and the 4–body phase space has
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the form

d5Φ4 = S M4

214π6
λ dx12 dx34 dy12 dy34 dφ, (A.14)

where S = 1/2 for π0 → e+e−γγ and S = 1/4 for π0 → e+e−e+e−.

A.4 5–Body Phase Space

This is getting absurd. Ignoring the Euler angles, the 5–body phase space has 8

dimensions. These are simply generalized from the previous examples. There are three

x variables, three y variables, and two φ angles. In relation to the π0 → e+e−e+e−γ

final state, they are defined as:

x12 = (p1 + p2)
2/P 2, (A.15a)

x34γ = (p3 + p4 + pγ)2/P 2, (A.15b)

x34 = (p3 + p4)
2/(p3 + p4 + pγ)2, (A.15c)

The phase space element is

d8Φ4eγ = S M4

214π6
λ λ12 λ34 dx12 dx34γ dx34 dy12 dy34γ dy34 dφ12 dφ34, (A.16)



Appendix B

The Meson–γγ Couplings

In this appendix I will evaluate the two allowed couplings between a meson and

two photons by explicate computation in the helicity basis. The photon momenta are

defined as in Appendix A and the polarization vectors are

ε+(±ẑ) =
1√
2

(0, 1,±i, 0) , (B.1a)

ε−(±ẑ) =
1√
2

(0, 1,∓i, 0) , (B.1b)

ε0(±ẑ) =
1√
k2

(k, 0, 0,±E) , (B.1c)

where the longitudinal polarization is allowed for off–shell photons.

The two couplings of the matrix element (see Equation (2.12)) can be written as

Hλ1λ2
= Hµνρσkµ

1 ε∗νλ1
kρ
2ε∗σλ2

, (B.2)

where

Hµνρσ =



















2
M g̃f(x1, x2) cos ζεµνρσ pseudoscalar coupling,

2
M g̃f(x1, x2) sin ζeiδ (gµρgνσ − gµσgνρ) scalar coupling

(B.3)

Starting with the scalar case,

HS
λ1λ2

=
2

M
g̃f(x1, x2) sin ζeiδ

[

(k1 · k2)(ε
∗
λ1

· ε∗λ2
) − (k1 · ε∗λ2

)(k2 · ε∗λ1
)
]

. (B.4)

Of the nine possible helicity combinations, only three are non–zero. Using the explicit
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forms of the polarization vectors,

HS
λ1λ2

=



































−Mg̃f(x1, x2) sin ζeiδz for λ1 = λ2 = +,

−Mg̃f(x1, x2) sin ζeiδz for λ1 = λ2 = −,

+Mg̃f(x1, x2) sin ζeiδw for λ1 = λ2 = 0,

(B.5)

where z and w are defined in Appendix A.

For the pseudoscalar case,

HP
λ1λ2

=
2

M
g̃f(x1, x2) cos ζεµνρσPµε∗νλ1

kρ
2ε

∗σ
λ2

, (B.6a)

= 2g̃f(x1, x2) cos ζk
(

ε∗1λ1
ε∗2λ2

− ε∗2λ1
ε∗1λ2

)

. (B.6b)

Here there are only two non–zero combinations

HP
λ1λ2

=



































+iMg̃f(x1, x2) cos ζλ for λ1 = λ2 = +,

−iMg̃f(x1, x2) cos ζλ for λ1 = λ2 = −,

0 for λ1 = λ2 = 0,

(B.7)

where λ is defined in Appendix A.

There are several interesting features of the two couplings. Although the trans-

verse couplings have different kinematic dependence when the photons are off–shell,

these differences are small. The significant difference in the transverse terms is the rel-

ative sign between the |++〉 state and the |−−〉 state. This reflects the fact that the

symmetric state is P–even while the antisymmetric state is P–odd. The last difference

is the extra longitudinal coupling in the scalar case which only contributes when both

photons are off–shell. For the decay to two real photons λ = z = 1 and w = 0.



Appendix C

Helicity Analysis

The matrix element for modes with Dalitz pairs has a similar structure as the

matrix element of the two–photon decay. We can simply make the substitution

kµε∗νλ →
∑

λ

kµε∗νλ Lrsλ, (C.1)

where the leptonic part,

Lrsλ =
i

k2
εµ
λΓrs,µ, (C.2)

is a contraction between the polarization vector of the virtual photon and the lepton

current,

Γµ
rs = −ieūrγ

µ
rsvs. (C.3)

The leptonic part is a scalar and can therefore be evaluated in any convenient frame of

reference. This appendix demonstrates such a calculation in the center of momentum

frame of the Dalitz pair. First, the current, which is a vector, can be calculated in the

frame in which the electron travels along the +ẑ direction and the positron moves in

the −ẑ direction. The spinors in the helicity basis take a simple form in this frame

u+(+ẑ) =

0

B

B

B

B

B

B

B

B

@

Σ

0

−∆

0

1

C

C

C

C

C

C

C

C

A

, u
−

(+ẑ) =

0

B

B

B

B

B

B

B

B

@

0

−∆

0

Σ

1

C

C

C

C

C

C

C

C

A

, v+(−ẑ) =

0

B

B

B

B

B

B

B

B

@

−∆

0

−Σ

0

1

C

C

C

C

C

C

C

C

A

, v
−

(−ẑ) =

0

B

B

B

B

B

B

B

B

@

0

Σ

0

∆

1

C

C

C

C

C

C

C

C

A

, (C.4)

where Σ =
√

E + p and ∆ =
√

E − p. After the spinors have been contracted, the

current for each of the four helicity states will be rotated into an arbitrary direction
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with polar angle θ and azimuthal angle φ, and contracted with one of the following

polarization vectors

ε+ =
1√
2

(

0, 1, +i, 0

)

, (C.5a)

ε− =
1√
2

(

0, 1, −i, 0

)

, (C.5b)

ε0 =
1√
k2

(

|k| , 0, 0, E

)

. (C.5c)

Therefore, there are 4 × 3 = 12 combinations of the helicities r, s, and λ.

The four lepton currents in the special frame are

Γ++ = +ieM
√

x0

(

0, 0, 0, 1

)

, (C.6a)

Γ+− = −ieM
√

x

(

0, 1, −i, 0

)

, (C.6b)

Γ−+ = −ieM
√

x

(

0, 1, +i, 0

)

, (C.6c)

Γ−− = −ieM
√

x0

(

0, 0, 0, 1

)

. (C.6d)

The rotation matrix is

R =





















1 0 0 0

0 cos θ cos φ − sin φ sin θ cos φ

0 cos θ sin φ cos φ sin θ sin φ

0 − sin θ 0 cos θ





















. (C.7)

The currents in the rotated frame are then

Γ++ = +ieM
√

x0

(

0, sin θ cos φ, sin θ sinφ, cos θ

)

, (C.8a)

Γ+− = −ieM
√

x

(

0, cos θ cos φ + i sin φ, cos θ sin φ − i cos φ, − sin θ

)

, (C.8b)

Γ−+ = −ieM
√

x

(

0, cos θ cos φ − i sin φ, cos θ sin φ + i cos φ, − sin θ

)

, (C.8c)

Γ−− = −ieM
√

x0

(

0, sin θ cos φ, sin θ sinφ, cos θ

)

. (C.8d)
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The 12 lepton parts are

L++,+ = +
e√
2M

η√
x

sin θe+iφ, (C.9a)

L++,− = +
e√
2M

η√
x

sin θe−iφ, (C.9b)

L++,0 = +
e

M

η√
x

cos θ, (C.9c)

L+−,+ = − e√
2M

1√
x

(1 + cos θ)e+iφ, (C.9d)

L+−,− = +
e√
2M

1√
x

(1 − cos θ)e−iφ, (C.9e)

L+−,0 = +
e

M

1√
x

sin θ, (C.9f)

L
−+,+ = +

e√
2M

1√
x

(1 − cos θ)e+iφ, (C.9g)

L
−+,− = − e√

2M

1√
x

(1 + cos θ)e−iφ, (C.9h)

L
−+,0 = +

e

M

1√
x

sin θ, (C.9i)

L
−−,+ = − e√

2M

η√
x

sin θe+iφ, (C.9j)

L
−−,− = − e√

2M

η√
x

sin θe−iφ, (C.9k)

L
−−,0 = − e

M

η√
x

cos θ, (C.9l)



Appendix D

Likelihood Table

This appendix contains the tabulated likelihood function for the complete π0 →

e+e−e+e− dataset. The likelihood function was calculated on a 3-dimensional array

with 21 bins in each direction. The explored range of the three parameters was

−10 ≤ α ≤ +10 (D.1a)

−0.05 ≤ κ ≤ +0.05 (D.1b)

0.00 ≤ η ≤ 0.25 (D.1c)

For convenience, the data are presented in a series of 2-dimensional tables, each at a

fixed value of α. Within a table, each row is a bin in κ while each column is a bin in η.

The translation from bin number to actual value is given by

α(i) = −10 + (i − 1) × 1, (D.2a)

κ(i) = −0.05 + (i − 1) × 0.005, (D.2b)

η(i) = 0 + (i − 1) × 0.0125. (D.2c)

The range of bins included in the tables is 5 ≤ iα ≤ 15, 0 ≤ iκ ≤ 20, and 0 ≤ iη ≤ 18.

The actual number given for each bin is the change in the likelihood function

between the bin in question and the bin at the minimum, scaled by 100,

N(α, κ, η) = 100 × [L(α, κ, η) − Lmin]. (D.3)
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The factor of 100 is included simply for convenience. The tables are color coded to

indicate points within 1,2, and 3σ of the minimum. With the scale factor, values less

than 177 (in blue) lay within 1σ, values less than 402 (in green) lay within 2σ, and

values less than 708 (in magenta) lay within 3σ.
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Table D.1: Tabulated values of 100 × ∆L in κ versus η for iα = 5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 3467 3461 3446 3421 3390 3353 3315 3279 3249 3229 3224 3238 3277 3345 3447 3587 3771 4004 4288

1 3199 3194 3178 3154 3122 3086 3048 3012 2983 2963 2958 2973 3013 3081 3183 3325 3510 3743 4028

2 2962 2957 2941 2917 2886 2850 2812 2777 2747 2728 2724 2739 2779 2848 2951 3093 3278 3512 3798

3 2756 2751 2736 2712 2680 2645 2607 2572 2543 2524 2520 2536 2576 2645 2749 2891 3077 3311 3598

4 2581 2576 2561 2537 2506 2470 2433 2398 2369 2351 2347 2363 2403 2473 2577 2720 2906 3141 3428

5 2438 2433 2418 2394 2363 2327 2291 2256 2227 2209 2205 2221 2262 2332 2436 2579 2766 3001 3289

6 2326 2321 2306 2282 2251 2216 2179 2144 2116 2097 2094 2110 2151 2221 2326 2469 2656 2891 3179

7 2245 2240 2225 2201 2171 2135 2099 2064 2036 2017 2014 2031 2072 2142 2246 2390 2577 2812 3100

8 2196 2191 2176 2152 2121 2086 2050 2015 1987 1969 1965 1982 2023 2093 2197 2341 2528 2763 3051

9 2178 2173 2158 2134 2104 2068 2032 1997 1969 1951 1948 1964 2005 2075 2179 2323 2510 2745 3033

10 2192 2186 2171 2148 2117 2082 2045 2011 1982 1964 1961 1977 2018 2088 2192 2335 2522 2757 3044

11 2237 2231 2216 2193 2162 2127 2090 2056 2027 2009 2006 2022 2062 2132 2236 2378 2565 2799 3086

12 2313 2308 2293 2269 2238 2203 2167 2132 2103 2085 2081 2097 2137 2207 2310 2452 2638 2872 3159

13 2421 2416 2401 2377 2346 2311 2274 2239 2211 2192 2188 2203 2243 2312 2415 2557 2742 2975 3261

14 2560 2555 2540 2516 2486 2450 2413 2378 2349 2330 2326 2341 2380 2449 2551 2692 2877 3109 3394

15 2731 2726 2711 2687 2656 2621 2584 2548 2519 2500 2495 2509 2548 2616 2718 2858 3042 3273 3557

16 2934 2928 2913 2889 2858 2823 2785 2750 2720 2700 2695 2709 2747 2814 2915 3054 3237 3468 3751

17 3167 3162 3147 3123 3092 3056 3018 2982 2952 2932 2926 2939 2977 3043 3143 3281 3463 3693 3974

18 3432 3427 3412 3388 3356 3320 3282 3246 3215 3194 3188 3201 3237 3303 3401 3539 3719 3948 4228

19 3729 3723 3708 3684 3652 3616 3577 3541 3510 3488 3481 3493 3528 3593 3691 3827 4006 4233 4511

20 4056 4051 4036 4011 3979 3942 3904 3867 3835 3813 3805 3816 3850 3914 4010 4145 4323 4548 4825
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Table D.2: Tabulated values of 100 × ∆L in κ versus η for iα = 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 2918 2913 2897 2871 2838 2800 2760 2721 2688 2665 2656 2667 2701 2764 2861 2996 3175 3401 3679

1 2651 2645 2629 2604 2571 2533 2493 2455 2422 2400 2391 2402 2437 2501 2598 2735 2914 3141 3420

2 2414 2409 2393 2368 2335 2297 2258 2220 2187 2165 2157 2169 2204 2268 2366 2503 2683 2910 3190

3 2209 2204 2188 2163 2130 2093 2053 2016 1984 1961 1954 1966 2001 2066 2165 2302 2482 2710 2991

4 2035 2029 2014 1989 1956 1919 1880 1842 1810 1789 1781 1793 1829 1895 1993 2131 2312 2540 2821

5 1892 1886 1871 1846 1814 1776 1737 1700 1668 1647 1640 1652 1688 1754 1853 1991 2172 2401 2682

6 1780 1775 1759 1734 1702 1665 1626 1589 1557 1536 1529 1541 1578 1643 1743 1881 2062 2291 2573

7 1699 1694 1679 1654 1622 1585 1546 1509 1477 1456 1449 1462 1498 1564 1663 1802 1983 2212 2494

8 1650 1645 1629 1605 1573 1536 1497 1460 1429 1407 1401 1413 1450 1515 1615 1753 1934 2164 2445

9 1632 1627 1612 1587 1555 1518 1479 1442 1411 1390 1383 1395 1432 1497 1597 1735 1916 2145 2427

10 1646 1641 1625 1601 1569 1532 1493 1456 1425 1403 1396 1409 1445 1510 1610 1747 1928 2157 2438

11 1691 1686 1670 1645 1613 1577 1538 1501 1469 1448 1441 1453 1489 1554 1653 1790 1971 2200 2480

12 1767 1762 1747 1722 1690 1653 1614 1577 1545 1524 1516 1528 1564 1629 1727 1864 2044 2272 2553

13 1875 1870 1854 1830 1797 1760 1722 1684 1653 1631 1623 1635 1670 1734 1832 1969 2148 2376 2655

14 2014 2009 1993 1969 1937 1899 1860 1823 1791 1769 1761 1772 1807 1871 1968 2104 2283 2509 2788

15 2185 2180 2164 2139 2107 2070 2030 1993 1960 1938 1929 1940 1975 2038 2134 2269 2447 2673 2951

16 2387 2382 2366 2341 2309 2271 2232 2194 2161 2138 2129 2139 2173 2235 2331 2465 2642 2867 3144

17 2620 2615 2599 2574 2541 2504 2464 2426 2393 2369 2360 2369 2402 2464 2559 2692 2868 3091 3367

18 2885 2879 2864 2838 2806 2768 2728 2689 2656 2631 2621 2630 2662 2723 2817 2949 3124 3346 3620

19 3181 3175 3159 3134 3101 3063 3022 2983 2949 2925 2914 2922 2953 3013 3106 3236 3410 3631 3903

20 3508 3502 3486 3461 3427 3389 3348 3309 3274 3249 3237 3244 3275 3333 3425 3554 3726 3946 4216
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Table D.3: Tabulated values of 100 × ∆L in κ versus η for iα = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 2464 2458 2441 2415 2380 2341 2298 2257 2221 2195 2183 2189 2219 2278 2370 2500 2673 2893 3165

1 2197 2191 2175 2148 2114 2074 2033 1992 1956 1930 1918 1925 1956 2015 2108 2239 2412 2633 2906

2 1961 1955 1939 1913 1879 1839 1798 1757 1722 1696 1685 1692 1723 1783 1876 2007 2182 2403 2677

3 1756 1751 1734 1708 1674 1635 1594 1553 1518 1493 1482 1490 1521 1581 1675 1807 1981 2204 2478

4 1582 1577 1560 1534 1501 1462 1420 1380 1346 1321 1310 1318 1350 1410 1504 1636 1811 2034 2309

5 1440 1434 1418 1392 1358 1319 1278 1239 1204 1179 1169 1177 1209 1270 1364 1496 1672 1895 2170

6 1328 1323 1306 1281 1247 1208 1167 1128 1093 1069 1058 1067 1099 1160 1254 1387 1562 1786 2061

7 1248 1242 1226 1200 1167 1128 1087 1048 1014 989 979 987 1020 1080 1175 1308 1483 1707 1982

8 1199 1193 1177 1151 1118 1079 1039 999 965 940 930 939 971 1032 1126 1259 1435 1658 1933

9 1181 1176 1159 1134 1100 1062 1021 982 948 923 913 921 953 1014 1109 1241 1417 1640 1915

10 1195 1189 1173 1147 1114 1076 1035 995 961 937 926 934 967 1027 1121 1254 1429 1652 1927

11 1240 1234 1218 1192 1159 1120 1080 1040 1006 981 971 979 1011 1071 1165 1297 1472 1694 1969

12 1316 1310 1294 1269 1235 1197 1156 1116 1082 1057 1046 1054 1086 1146 1239 1371 1545 1767 2041

13 1424 1418 1402 1376 1343 1304 1263 1223 1189 1164 1152 1160 1191 1251 1344 1475 1649 1870 2143

14 1563 1557 1541 1515 1482 1443 1402 1362 1327 1301 1290 1297 1328 1387 1479 1610 1783 2003 2276

15 1733 1727 1711 1685 1652 1613 1571 1531 1496 1470 1458 1465 1495 1554 1645 1775 1947 2167 2438

16 1934 1929 1913 1887 1853 1814 1772 1732 1696 1670 1658 1664 1693 1751 1842 1971 2142 2361 2631

17 2167 2162 2145 2119 2086 2046 2004 1964 1928 1901 1888 1894 1922 1979 2069 2197 2367 2585 2854

18 2431 2426 2409 2383 2349 2310 2268 2226 2190 2163 2149 2154 2182 2238 2327 2454 2623 2839 3107

19 2727 2721 2705 2678 2644 2604 2562 2520 2483 2455 2441 2445 2472 2527 2615 2741 2908 3123 3389

20 3053 3048 3031 3005 2970 2930 2887 2845 2807 2779 2764 2767 2793 2847 2934 3058 3224 3437 3702



169

Table D.4: Tabulated values of 100 × ∆L in κ versus η for iα = 8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 2105 2099 2082 2054 2019 1977 1933 1889 1851 1821 1805 1808 1834 1888 1975 2099 2267 2481 2746

1 1839 1833 1816 1789 1753 1712 1668 1624 1586 1557 1542 1545 1571 1626 1713 1839 2007 2222 2488

2 1603 1598 1581 1553 1518 1477 1433 1390 1352 1323 1308 1312 1339 1394 1482 1608 1777 1992 2260

3 1399 1393 1376 1349 1314 1273 1230 1187 1149 1121 1106 1110 1137 1193 1281 1408 1577 1793 2061

4 1226 1220 1203 1176 1141 1100 1057 1014 977 949 934 938 966 1022 1111 1238 1407 1624 1892

5 1083 1078 1061 1034 999 958 915 873 836 808 793 798 825 882 971 1098 1268 1485 1754

6 972 966 950 923 888 847 804 762 725 697 683 688 716 772 861 989 1159 1376 1645

7 892 886 870 843 808 768 725 683 646 618 604 609 637 693 782 910 1080 1297 1566

8 843 837 821 794 759 719 676 634 597 569 556 560 588 645 734 861 1032 1249 1518

9 826 820 803 777 742 702 659 617 580 552 538 543 571 627 716 844 1014 1231 1500

10 839 833 817 790 756 715 672 630 593 566 552 556 584 640 729 856 1026 1243 1511

11 884 878 862 835 800 760 717 675 638 610 596 600 628 684 773 899 1069 1285 1553

12 960 955 938 911 877 836 793 751 714 686 671 675 703 758 847 973 1142 1358 1625

13 1068 1062 1045 1019 984 944 900 858 821 792 778 781 808 863 951 1077 1245 1461 1728

14 1207 1201 1184 1157 1123 1082 1039 996 959 930 915 918 945 999 1087 1212 1379 1594 1860

15 1377 1371 1354 1327 1292 1252 1208 1166 1128 1099 1083 1086 1112 1166 1252 1377 1543 1757 2022

16 1578 1572 1555 1528 1493 1453 1409 1366 1328 1298 1282 1284 1310 1363 1449 1572 1738 1951 2215

17 1810 1805 1788 1761 1726 1684 1641 1597 1559 1529 1512 1514 1538 1591 1675 1798 1963 2174 2437

18 2074 2068 2051 2024 1989 1947 1903 1860 1820 1790 1773 1774 1797 1849 1933 2054 2218 2428 2689

19 2369 2363 2346 2319 2283 2241 2197 2153 2113 2082 2064 2064 2087 2137 2220 2341 2503 2712 2972

20 2695 2689 2672 2644 2608 2566 2521 2477 2437 2405 2386 2386 2407 2457 2538 2657 2818 3025 3284
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Table D.5: Tabulated values of 100 × ∆L in κ versus η for iα = 9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1844 1838 1820 1791 1754 1711 1665 1619 1577 1545 1525 1524 1545 1595 1677 1796 1958 2166 2426

1 1578 1572 1554 1526 1489 1446 1400 1355 1313 1281 1262 1261 1283 1333 1416 1536 1699 1908 2168

2 1343 1337 1320 1292 1255 1212 1166 1121 1080 1048 1030 1029 1052 1102 1185 1306 1469 1679 1940

3 1139 1133 1116 1088 1051 1009 963 918 877 846 828 828 850 901 985 1106 1270 1480 1742

4 966 960 943 915 879 836 791 746 706 674 656 656 680 731 815 937 1101 1311 1573

5 824 818 801 773 737 695 649 605 565 533 516 516 540 591 675 797 962 1173 1435

6 713 708 690 662 626 584 539 494 454 423 406 406 430 482 566 688 853 1064 1327

7 634 628 610 583 547 505 459 415 375 344 327 327 351 403 487 610 774 986 1248

8 585 579 562 534 498 456 411 367 327 296 278 279 303 355 439 561 726 937 1200

9 567 562 544 517 481 439 394 349 310 279 261 262 286 337 422 544 708 919 1182

10 581 575 558 530 494 452 407 363 323 292 275 275 299 350 434 556 720 931 1194

11 626 620 603 575 539 497 452 408 368 337 319 319 343 394 478 599 763 974 1235

12 702 696 679 651 615 573 528 484 444 412 394 394 417 468 552 673 836 1046 1307

13 809 804 786 759 723 680 635 591 550 519 501 500 523 573 656 777 940 1149 1410

14 948 942 925 897 861 819 773 729 688 656 638 637 659 709 791 911 1073 1282 1542

15 1118 1112 1094 1067 1030 988 943 897 857 825 806 804 826 875 957 1076 1237 1445 1704

16 1319 1313 1295 1268 1231 1189 1143 1097 1056 1024 1004 1003 1024 1072 1153 1271 1431 1638 1896

17 1551 1545 1527 1499 1463 1420 1374 1328 1287 1254 1234 1231 1252 1299 1379 1497 1656 1861 2118

18 1814 1808 1790 1762 1726 1683 1636 1590 1548 1515 1494 1491 1510 1557 1636 1752 1910 2115 2370

19 2108 2102 2085 2056 2019 1976 1930 1883 1841 1806 1785 1781 1800 1845 1923 2038 2195 2398 2652

20 2433 2427 2410 2381 2344 2301 2254 2207 2163 2129 2106 2102 2119 2164 2241 2354 2510 2711 2963
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Table D.6: Tabulated values of 100 × ∆L in κ versus η for iα = 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1681 1675 1657 1628 1589 1544 1496 1447 1403 1367 1344 1339 1357 1401 1479 1593 1749 1951 2205

1 1417 1410 1392 1363 1325 1280 1232 1184 1140 1104 1082 1077 1095 1141 1218 1333 1490 1693 1947

2 1182 1176 1158 1129 1091 1046 998 951 907 872 850 846 864 910 988 1104 1261 1465 1720

3 979 973 955 926 888 844 796 748 705 670 648 644 663 709 788 904 1062 1267 1522

4 806 800 782 753 716 671 624 577 534 499 477 474 493 539 619 735 893 1098 1354

5 665 658 641 612 574 530 483 436 393 358 337 334 353 400 479 596 755 960 1216

6 554 548 530 501 464 420 373 326 283 249 228 224 244 291 370 487 646 851 1108

7 474 468 450 422 384 341 293 247 204 170 149 146 165 212 292 409 568 773 1030

8 426 420 402 373 336 292 245 198 156 122 101 98 117 164 244 361 520 725 982

9 408 402 384 356 319 275 228 181 139 104 83 80 100 147 226 343 502 707 963

10 422 416 398 370 332 289 242 195 152 118 97 94 113 160 239 356 514 719 975

11 467 461 443 415 377 334 286 240 197 163 141 138 157 203 282 399 557 762 1017

12 543 537 519 491 453 409 362 315 272 238 217 213 232 278 356 472 630 834 1089

13 650 644 626 598 560 516 469 422 379 344 323 318 337 383 461 576 733 937 1191

14 789 782 765 736 698 655 607 560 517 482 459 455 473 518 596 710 867 1069 1323

15 958 952 934 905 868 824 776 729 685 650 627 622 639 684 761 875 1030 1232 1485

16 1159 1152 1135 1106 1068 1024 976 928 884 849 826 820 837 881 957 1070 1224 1425 1677

17 1390 1384 1366 1337 1299 1255 1207 1159 1114 1078 1055 1048 1064 1108 1183 1295 1448 1648 1898

18 1653 1647 1629 1600 1562 1517 1469 1420 1375 1339 1314 1308 1323 1365 1439 1550 1702 1901 2150

19 1947 1941 1922 1893 1855 1810 1761 1712 1667 1630 1605 1597 1611 1653 1726 1835 1986 2184 2431

20 2271 2265 2247 2218 2179 2134 2085 2035 1989 1951 1926 1917 1931 1971 2043 2151 2301 2496 2742
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Table D.7: Tabulated values of 100 × ∆L in κ versus η for iα = 11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1620 1614 1595 1565 1525 1478 1428 1377 1330 1291 1265 1256 1269 1309 1381 1490 1641 1838 2085

1 1356 1349 1331 1301 1261 1215 1164 1114 1067 1029 1003 994 1008 1049 1122 1231 1383 1580 1828

2 1122 1116 1097 1067 1028 982 932 881 835 797 771 763 777 818 892 1002 1154 1352 1601

3 919 913 894 864 825 779 729 679 633 595 570 562 577 619 692 803 956 1154 1404

4 747 741 722 692 653 607 558 508 462 425 400 392 407 449 523 634 787 986 1236

5 606 599 581 551 512 467 417 368 322 284 260 252 267 310 384 496 649 848 1098

6 495 489 470 441 402 357 307 258 212 175 150 143 158 201 275 387 540 740 990

7 416 410 391 362 323 277 228 179 133 96 72 65 80 122 197 309 462 662 912

8 368 361 343 313 275 229 180 131 85 48 24 17 32 75 149 261 414 614 864

9 350 344 326 296 257 212 163 114 68 31 7 0 15 57 132 243 397 596 846

10 364 358 339 310 271 226 177 128 82 45 20 13 28 70 145 256 409 608 858

11 409 403 384 355 316 271 222 172 127 89 65 57 72 114 188 299 452 651 900

12 485 478 460 431 392 347 297 248 202 165 140 132 147 188 262 372 525 723 972

13 592 585 567 538 499 453 404 355 309 271 246 238 252 293 366 476 628 825 1074

14 730 724 705 676 637 591 542 492 446 408 382 374 388 428 501 610 761 958 1205

15 899 893 874 845 806 760 710 660 614 576 550 541 554 594 666 774 924 1121 1367

16 1099 1093 1075 1045 1006 960 910 860 813 774 748 738 751 790 861 969 1118 1313 1558

17 1331 1324 1306 1276 1237 1191 1141 1090 1043 1004 976 966 978 1017 1087 1194 1342 1536 1780

18 1593 1587 1568 1538 1499 1452 1402 1351 1303 1263 1236 1225 1236 1274 1343 1449 1595 1788 2031

19 1886 1880 1861 1831 1791 1745 1694 1643 1595 1554 1526 1514 1524 1561 1629 1734 1879 2070 2312

20 2210 2204 2185 2155 2115 2068 2017 1965 1916 1875 1846 1834 1843 1878 1945 2049 2193 2382 2622
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Table D.8: Tabulated values of 100 × ∆L in κ versus η for iα = 12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1661 1655 1635 1604 1563 1515 1462 1409 1359 1317 1287 1275 1284 1319 1387 1491 1636 1827 2068

1 1398 1391 1372 1341 1300 1252 1200 1147 1097 1056 1026 1014 1023 1060 1128 1232 1378 1570 1811

2 1165 1158 1139 1108 1067 1019 967 915 866 824 795 783 793 830 898 1004 1150 1342 1585

3 962 955 936 905 865 817 766 713 664 623 594 583 593 630 699 805 952 1145 1388

4 790 784 765 734 694 646 594 542 494 453 424 413 424 461 531 637 784 977 1221

5 649 643 624 593 553 506 454 402 354 313 285 274 284 322 392 498 646 839 1083

6 539 533 514 483 443 396 344 293 244 204 176 165 176 214 283 390 538 731 976

7 460 454 435 404 364 317 266 214 166 125 97 86 97 136 205 312 460 654 898

8 412 405 386 356 316 269 218 166 118 78 50 39 50 88 158 264 412 606 850

9 395 388 369 339 299 252 201 149 101 60 32 22 33 71 140 247 394 588 832

10 408 402 383 353 313 266 214 163 115 74 46 35 46 84 153 259 407 600 844

11 453 447 428 397 357 310 259 208 159 119 90 79 90 127 197 302 449 642 886

12 529 523 504 473 433 386 335 283 235 194 165 154 164 201 270 376 522 715 958

13 636 629 611 580 540 493 442 390 341 300 271 259 269 306 374 479 625 817 1059

14 774 767 748 718 678 631 579 527 478 437 408 395 405 441 509 613 758 949 1191

15 943 936 917 887 847 799 747 695 646 604 575 562 571 607 674 777 922 1112 1352

16 1143 1136 1117 1087 1046 999 947 894 845 803 773 759 768 802 869 971 1115 1304 1543

17 1374 1367 1348 1317 1277 1229 1177 1124 1074 1031 1001 987 995 1029 1094 1196 1338 1526 1764

18 1635 1629 1610 1579 1538 1490 1438 1384 1334 1291 1260 1245 1252 1285 1350 1450 1591 1778 2015

19 1928 1922 1902 1871 1830 1782 1729 1676 1625 1581 1549 1534 1540 1572 1635 1735 1875 2060 2295

20 2252 2245 2226 2195 2153 2105 2052 1997 1946 1902 1869 1853 1858 1889 1951 2049 2188 2372 2605
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Table D.9: Tabulated values of 100 × ∆L in κ versus η for iα = 13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1807 1800 1780 1748 1706 1656 1602 1546 1493 1448 1415 1398 1403 1434 1497 1596 1735 1920 2155

1 1544 1537 1517 1485 1443 1394 1339 1284 1232 1187 1154 1138 1143 1175 1238 1338 1478 1664 1900

2 1311 1305 1285 1253 1211 1161 1107 1052 1001 956 924 908 914 946 1010 1110 1251 1437 1673

3 1109 1103 1083 1051 1009 960 906 851 800 756 723 708 714 747 811 911 1053 1240 1477

4 938 931 911 880 838 789 735 681 630 586 554 538 545 578 642 743 885 1073 1310

5 797 791 771 739 698 649 595 541 490 446 414 399 406 439 504 605 747 935 1173

6 687 681 661 630 588 539 486 432 381 337 306 291 298 331 396 497 640 828 1066

7 608 602 582 551 510 461 407 353 302 259 227 213 220 253 318 419 562 750 988

8 560 554 534 503 462 413 360 306 255 211 180 165 172 206 271 372 514 702 940

9 543 537 517 486 445 396 343 289 238 194 163 148 155 188 253 354 497 684 922

10 557 551 531 500 458 410 357 303 252 208 176 162 168 202 266 367 509 697 934

11 602 595 576 545 503 455 401 347 296 253 221 206 212 245 310 410 552 739 976

12 678 671 652 620 579 530 477 423 372 328 296 280 287 319 383 483 625 811 1048

13 784 778 758 727 686 637 583 529 478 434 401 386 392 424 487 587 727 913 1149

14 922 916 896 865 823 774 721 666 615 570 538 522 527 559 621 720 860 1046 1281

15 1091 1084 1065 1033 992 943 889 834 782 737 704 688 693 724 786 884 1023 1208 1442

16 1290 1284 1264 1233 1191 1142 1088 1033 981 935 902 885 889 919 981 1078 1216 1400 1633

17 1521 1514 1495 1463 1421 1372 1318 1262 1210 1164 1130 1112 1116 1145 1206 1302 1439 1621 1853

18 1782 1776 1756 1724 1682 1632 1578 1522 1469 1423 1388 1370 1373 1401 1461 1556 1692 1873 2104

19 2075 2068 2048 2016 1974 1924 1869 1813 1759 1713 1677 1658 1660 1688 1746 1840 1975 2154 2384

20 2398 2391 2371 2339 2296 2246 2191 2134 2080 2033 1997 1977 1977 2004 2061 2154 2287 2465 2693
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Table D.10: Tabulated values of 100 × ∆L in κ versus η for iα = 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 2059 2052 2032 1999 1955 1903 1847 1789 1734 1685 1649 1628 1629 1656 1713 1807 1941 2121 2349

1 1796 1789 1769 1736 1693 1641 1585 1528 1473 1425 1388 1368 1370 1397 1455 1550 1685 1865 2094

2 1564 1557 1537 1504 1461 1410 1354 1296 1242 1194 1158 1139 1140 1168 1227 1322 1458 1638 1869

3 1363 1356 1335 1303 1260 1209 1153 1096 1042 994 959 939 941 970 1029 1124 1260 1442 1673

4 1192 1185 1165 1132 1089 1038 983 926 872 825 789 770 773 801 861 957 1093 1275 1506

5 1051 1045 1024 992 949 898 843 786 732 685 650 632 634 663 723 819 956 1138 1369

6 942 935 915 883 840 789 734 677 624 577 542 523 526 555 615 711 848 1030 1262

7 863 856 836 804 761 711 656 599 545 499 464 445 448 477 537 634 770 953 1185

8 815 808 788 756 714 663 608 551 498 451 416 398 401 430 490 586 723 905 1137

9 798 791 771 739 697 646 591 535 481 434 399 381 384 413 473 569 705 888 1119

10 812 805 785 753 711 660 605 549 495 448 413 394 397 426 486 582 718 900 1131

11 857 850 830 798 755 705 650 593 539 493 457 439 441 469 529 625 761 942 1173

12 933 926 906 873 831 780 725 669 615 568 532 513 515 543 603 698 833 1014 1245

13 1039 1032 1012 980 937 887 832 775 721 674 638 618 620 648 706 801 936 1116 1346

14 1177 1170 1150 1118 1075 1024 969 912 857 810 774 754 755 782 841 934 1069 1248 1477

15 1345 1338 1318 1286 1243 1192 1137 1079 1025 977 940 920 921 947 1005 1098 1231 1410 1638

16 1544 1538 1517 1485 1442 1391 1335 1278 1223 1175 1138 1117 1117 1143 1199 1291 1424 1602 1829

17 1775 1768 1747 1715 1672 1621 1565 1507 1451 1403 1365 1344 1343 1368 1424 1515 1647 1823 2049

18 2036 2029 2008 1976 1932 1881 1825 1766 1711 1661 1623 1601 1600 1624 1679 1769 1899 2074 2299

19 2327 2320 2300 2267 2224 2172 2115 2057 2000 1950 1912 1889 1886 1910 1963 2052 2181 2355 2578

20 2650 2643 2622 2589 2545 2494 2436 2377 2320 2270 2230 2207 2203 2225 2278 2366 2493 2666 2887
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Table D.11: Tabulated values of 100 × ∆L in κ versus η for iα = 15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 2419 2412 2391 2357 2312 2259 2200 2140 2082 2031 1990 1966 1963 1985 2038 2127 2256 2429 2652

1 2157 2150 2129 2095 2050 1997 1939 1879 1821 1770 1731 1707 1704 1727 1781 1870 1999 2174 2397

2 1925 1918 1897 1864 1819 1766 1708 1649 1591 1541 1501 1478 1475 1499 1553 1643 1773 1948 2172

3 1724 1717 1696 1663 1618 1566 1508 1448 1391 1341 1302 1279 1277 1301 1355 1446 1576 1752 1977

4 1554 1547 1526 1492 1448 1396 1338 1279 1222 1172 1133 1110 1108 1133 1188 1278 1409 1585 1811

5 1414 1407 1386 1353 1308 1256 1199 1140 1083 1033 994 972 970 995 1050 1141 1272 1448 1674

6 1304 1297 1277 1243 1199 1147 1090 1031 974 925 886 864 862 887 942 1033 1165 1341 1567

7 1226 1219 1198 1165 1121 1069 1012 953 896 847 808 786 785 809 865 956 1087 1264 1490

8 1178 1171 1151 1117 1074 1021 964 905 849 799 761 739 737 762 817 909 1040 1217 1443

9 1161 1154 1134 1101 1057 1005 947 889 832 783 744 722 721 745 800 891 1023 1199 1425

10 1175 1168 1148 1114 1071 1019 961 903 846 796 758 736 734 758 813 904 1035 1211 1437

11 1220 1213 1192 1159 1115 1063 1006 947 891 841 802 780 778 802 857 947 1078 1254 1479

12 1296 1289 1268 1235 1191 1139 1082 1023 966 916 877 854 852 876 930 1020 1150 1326 1550

13 1402 1395 1374 1341 1297 1245 1188 1129 1072 1022 982 959 957 980 1034 1123 1253 1428 1651

14 1539 1532 1512 1478 1434 1382 1325 1265 1208 1158 1118 1095 1092 1115 1168 1257 1386 1559 1782

15 1708 1700 1680 1647 1602 1550 1492 1433 1375 1325 1285 1261 1257 1279 1332 1420 1548 1721 1943

16 1906 1899 1879 1845 1801 1749 1691 1631 1573 1522 1481 1457 1453 1474 1526 1613 1740 1912 2133

17 2136 2129 2108 2075 2031 1978 1920 1859 1801 1750 1709 1683 1679 1699 1750 1836 1963 2133 2353

18 2397 2390 2369 2335 2291 2238 2179 2119 2060 2008 1966 1940 1935 1955 2005 2090 2215 2384 2603

19 2688 2681 2660 2626 2581 2528 2469 2408 2349 2296 2254 2228 2221 2240 2289 2373 2496 2665 2882

20 3010 3003 2982 2948 2903 2849 2790 2729 2669 2615 2572 2545 2537 2555 2603 2686 2808 2975 3190


